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Cryptographic Group Actions

Easy to compute 𝑔𝑥 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋, but hard to recover 𝑔 from (𝑥 , 𝑔𝑥)

Example Commutative group gives Non-Interactive Key-Exchange

𝑥 𝑥𝐴 = 𝑔𝐴𝑥

𝑥𝐵 = 𝑔𝐵𝑥

𝑔𝐴𝑔𝐵𝑥 = 𝑔𝐵𝑔𝐴𝑥

𝑔𝐴

𝑔𝐵 𝑔𝐵

𝑔𝐴

Quantum resistance
Best known generic (quantum) algorithm to invert the action is subexponential

Isogeny class-group action only known commutative, quantum resistant
cryptographic group action
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Abelian Varieties & Isogenies

Abelian Variety (Formal)
Group scheme over a field with one property from each set

(i) projective, proper
(ii) geometrically irreducible, irreducible, geometrically connected, connected
(iii) smooth, geometrically reduced

Abelian Variety (Informal) Variety + Group Law

Fact Elliptic curves are exactly 1-dim Abelian Varieties

Isogeny Surjective morphism of Abelian Varieties

First isomorphism theorem

{𝐺 ⊆ 𝐴 finite} ↭ {separable isogenies 𝐴 −→ ∗}/ {iso}

𝐺 ↦ 𝜑𝐺 with ker(𝜑𝐺 ) = 𝐺 (deg(𝜑𝐺 ) = #𝐺)

ker(𝜑) ↤ 𝜑
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The isogeny class-group action

Let𝒪 be an order inside an imaginary quadratic number field

An𝒪-orientation on a curve 𝐸 is an injective ring morphism 𝜄𝐸 ∶ 𝒪 −→ End(𝐸)

Theorem Cl(𝒪) acts on isomorphism classes of oriented elliptic curves 𝐸

Construction Act by [𝒜] in Cl(𝒪). Let [𝔞] = [𝒜] with 𝔞 ⊆ 𝒪 integral

𝐺𝔞 = ⋂
𝜎∈𝔞

ker(𝜄𝐸 (𝜎)) ⇝ 𝜑𝔞 ∶ 𝐸 −→ 𝐸𝔞 with ker(𝜑𝔞) = 𝐺𝔞

Define [𝒜] ⋅ 𝐸 = [𝔞] ⋅ 𝐸 = 𝐸𝔞

Lemma deg(𝜑𝔞) = N(𝔞)

Example (CSIDH) 𝐸/𝔽𝑝 supersingular, 𝜄𝐸 ∶ ℤ[√−𝑝] −→ End(𝐸); √−𝑝 ↦ 𝜋

Theorem
The action on oriented supersingular elliptic curves is free and has at most 2
orbits
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The Ideal2Isogeny Construction

Want to compute [𝔞] ⋅ 𝐸 = 𝐸𝔞
Let [𝔞] = [𝔟] = [𝔠]
Assume N(𝔟), N(𝔠) coprime

𝐸 𝐸𝔞

Φ

𝐸′

𝐸

𝜑𝔟

𝜑𝔠

Φ∶ 𝐸 × 𝐸 −→ 𝐸𝔞 × 𝐸 ′

ker(Φ) = {(N(𝔟)𝑥, 𝜑𝔠𝜑𝔟(𝑥)) ∣ 𝑥 ∈ 𝐸[degp(Φ)]}

= {(N(𝔟)𝑥, 𝜑𝔠𝔟(𝑥)) ∣ 𝑥 ∈ 𝐸[degp(Φ)]}

Norm equation degp(Φ) = N(𝔟) + N(𝔠) != 2𝑓

Strategy Find 𝔞, 𝔟 equivalent ideals such that

1. 𝐸[2𝑓 ] is 𝔽𝑝2-rational 2. N(𝔟), N(𝔠) coprime
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𝐴𝑢 𝐸𝑑 𝐸𝑑
𝔞

Φ

𝐸𝑑

𝐴

𝐴𝑣

𝜑𝑢 diag(𝜑𝔟)

diag(𝜑𝔠)

𝜑𝑣

Φ∶ 𝐴𝑢 × 𝐴𝑣 −→ 𝐸𝑑
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= {(𝑢N(𝔟)𝑥, 𝜑𝑣diag(𝜑𝔠𝔟)𝜑𝑢 (𝑥)) ∣ 𝑥 ∈ 𝐴𝑢[degp(Φ)]}

Norm equation degp(Φ) = 𝑢N(𝔟) + 𝑣N(𝔠) != 2𝑓

Strategy Find 𝔞, 𝔟 equivalent ideals and 𝜑𝑢 , 𝜑𝑣 such that

1. 𝐸[2𝑓 ] is 𝔽𝑝2-rational 2. 𝑢N(𝔟), 𝑣N(𝔠) coprime 3. Can compute 𝜑𝑢 , 𝜑𝑣

rueg.re/siam25 7/14

https://rueg.re/siam25


The Ideal2Isogeny Construction: Iteration #3

Want to compute [𝔞] ⋅ 𝐸 = 𝐸𝔞
Let [𝔞] = [𝔟] = [𝔠], 𝜑𝑢 ∶ 𝐸𝑑 −→ 𝐴𝑢 , 𝜑𝑣 ∶ 𝐸𝑑 −→ 𝐴𝑣

Assume 𝑢N(𝔟), 𝑣N(𝔠) coprime

𝐴𝑢 𝐸𝑑 𝐸𝑑
𝔞

Φ

𝐸𝑑

𝐴

𝐴𝑣

𝜑𝑢 diag(𝜑𝔟)

diag(𝜑𝔠)

𝜑𝑣
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diag(𝜑𝔠)

𝜑𝑣
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Solvability of the norm equation: Conflict

degp(Φ) = 2𝑓 (Target solution of 𝑢N(𝐼) + 𝑣N(𝐽) = 2𝑓 )

Guaranteed solutions for 𝑢N(𝔟) + 𝑣N(𝔠) = 2𝑛 when 2𝑛 ≥ N(𝔟)N(𝔠) (Coin Problem)
…but Minkowski’s bound only gives us 𝔟, 𝔠 with N(𝔟), N(𝔠) ≈ √Disc(𝒪) = √𝑝
…empirical example when𝒪 = ℤ[√−𝑝]we can only find 𝔟, 𝔠with 𝑝 ≤ N(𝔟)N(𝔠) ≤ 2𝑝
…so 𝑝 ≤ 2𝑛 = 2⌈log2(𝑝)⌉

Rationality of kernel (Want 𝐸[degp(Φ)] ⊆ 𝐸(𝔽𝑝2 ))

𝐸 supersingular, so #𝐸(𝔽𝑝2 ) = (𝑝 + 1)2 (Need supersingularity!)

…if 𝐸[2𝑛] ⊆ 𝐸(𝔽𝑝2 ), then 2𝑛 must divide 𝑝 + 1 (because #𝐸[2𝑛] = 22𝑛)

…in particular 2𝑛 = 2⌊log2(𝑝)⌋−𝜀 < 𝑝

Core Problem
Even the smallest equivalent ideals are too big…but not by much
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Solvability of the norm equation: An idea

Recall
Ideals of𝒪 prime to the conductor factorise uniquely as product of prime ideals

Idea
Factor the ideals 𝔟 = 𝔟𝑒𝔟𝑘 , 𝔠 = 𝔠𝑒𝔠𝑘 with action of 𝔟𝑒 , 𝔠𝑒
Compute easy part first and hope we can find a diagram with norm-equation

𝑢N(𝔟𝑘 ) + 𝑣N(𝔠𝑘 ) = 2𝑓

Maybe then N(𝔟𝑘 )N(𝔠𝑘 ) ≤ 2𝑓 , guaranteeing 𝑢, 𝑣 ≥ 0 solution
“Easy” In practice
Ensure N(𝔟𝑒 ), N(𝔠𝑒 ) are products of small primes split in𝒪
Concretely𝒪 = ℤ[√−𝑝]
Compute [𝔟𝑒] ⋅ 𝐸 with successive Elkies isogenies
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Solvability of the norm equation: The diagram

𝐸𝑑

𝐴𝑢 𝐸𝑑
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𝔞

Φ
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Norm equation degp(Φ) = 𝑢N(𝔟𝑘 ) + 𝑣N(𝔠𝑘 )
!= 2𝑓

ker(Φ) = {(𝑢N(𝔟𝑒 )𝑥 , 𝜑𝑣diag(𝜑𝔠𝑘𝜑𝔟𝑘 )𝜑𝑢 (𝑥)) ∣ 𝑥 ∈ 𝐴𝑢[2𝑓 ]} and 𝜑𝔠𝑘𝜑𝔟𝑘=
1

N(𝔟𝑒 )N(𝔠𝑒 )
𝜑𝔠𝑒𝜑𝔠𝔟𝜑𝔟𝑒
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Constructing isogenies of prescribed degree
The isogenies 𝜑𝑢, 𝜑𝑣

Dimension 1⟿ Dimension 2 Kani-isogenyΦ
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2⟿ Dimension 4 Kani-isogenyΦ
Sums of squares

Dimension 4⟿ Dimension 8 Kani-isogenyΦ
Zahrin’s trick
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An algorithm for solving the norm equation

Input: 𝔞 ⊂ 𝒪, 𝑝 = 𝑐2𝑒 − 1, Set of small split primes𝔅
Output: Return 𝔟𝑒 , 𝔟𝑘 , 𝔠𝑒 , 𝔠𝑘 , 𝜑𝑢 , 𝜑𝑣 such that 𝑢N(𝔟𝑘 ) + 𝑣N(𝔠𝑘 ) = 2𝑓 ≤ 2𝑒−3

1. Perform lattice reduction on 𝔞 to obtain small basis 𝑏1, 𝑏2
2. Use 𝑏1, 𝑏2 to iterate over small ideals N(𝔟) equivalent to 𝔞
3. Factor the ideals 𝔟 = 𝔟𝑒𝔟𝑘 so that N(𝔟𝑒 ) is a product of primes in𝔅
4. Choosing pairs 𝔟 = 𝔟𝑒𝔟𝑘 , 𝔠 = 𝔠𝑒𝔠𝑘 , try to solve 𝑢N(𝔟𝑘 ) + 𝑣N(𝔠𝑘 ) = 2𝑓 < 2𝑒−3

5. Construct 𝜑𝑢 , 𝜑𝑣 as sums-of-squares (𝑥 , 𝑦; −𝑦, 𝑥)matrices (plus some Elkies isogenies)

6. Return 𝔟𝑒 , 𝔟𝑘 , 𝜑𝑢 , 𝜑𝑣
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Some data for the solvability of the norm equation

Avg Med Min Max

Time: 37.137 24.506 0.968 542.416
Rerandomisations: 0.499 0 0 11

log(2𝑓 = 𝑢N(𝔟𝑘 ) + 𝑣N(𝔠𝑘 )) 4076.080 4077 4058 4081
UV solutions tried: 38952.563 19701 10 548118

3-Elkies steps for 𝜑𝔟𝑒 , 𝜑𝔠𝑒 : 4.950 4 0 17
7-Elkies steps for 𝜑𝔟𝑒 , 𝜑𝔠𝑒 : 2.658 2 0 9
11-Elkies steps for 𝜑𝔟𝑒 , 𝜑𝔠𝑒 : 2.010 2 0 9
17-Elkies steps for 𝜑𝔟𝑒 , 𝜑𝔠𝑒 : 1.691 1 0 7
19-Elkies steps for 𝜑𝔟𝑒 , 𝜑𝔠𝑒 : 1.567 1 0 6

3-Elkies steps for 𝜑𝑢, 𝜑𝑣 : 0.496 0 0 1
7-Elkies steps for 𝜑𝑢, 𝜑𝑣 : 0.259 0 0 1
11-Elkies steps for 𝜑𝑢, 𝜑𝑣 : 0.160 0 0 1
17-Elkies steps for 𝜑𝑢, 𝜑𝑣 : 0.000 0 0 0
19-Elkies steps for 𝜑𝑢, 𝜑𝑣 : 0.106 0 0 1

Table: Times, rerandomisations and elkies steps required for 𝑝 = 63 ⋅ 24084 − 1.
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Implementation Results
This all works!

Lang. 500 1000 1500 2000 4000
Re
st
ric
te
d CSIDH* C 40ms

SQALE* C 5.75s**

dCTIDH* C 350ms**

Un
re
st
ric
te
d

SCALLOP* C++ 35s 750s

SCALLOP-HD* Sage 88s 1140s

PEARL-SCALLOP* C++ 30s 58s 710s

KLaPoTi
Sage 207s

Rust 1.95s

PEGASIS Sage 1.53s 4.21s 10.5s 21.3s 121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.
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Thank you for your attention

PEGASIS Paper https://eprint.iacr.org/2025/401 (To appear at Crypto’25)

PEGASIS Implementation https://github.com/pegasis4d

Slides https://rueg.re/siam25

Ask me anything (I have bonus slides!)

https://eprint.iacr.org/2025/401
https://github.com/pegasis4d
https://rueg.re/siam25


Higher dimensional isogenies

A Principally Polarised Abelian Variety is an Abelian variety 𝐴 together with an
isomorphism 𝜆𝐴 ∶ 𝐴 ∼−→ 𝐴∨

(which is induced by an ample divisor)

PPAVs vs Elliptic Curves

𝐸, 𝐸 ′ Elliptic curves

Example
diag𝑑 (𝑓)∶ 𝐴𝑑 −→ 𝐵𝑑 is polarised (if 𝑓 is) and degp(diag𝑑 (𝑓)) = degp(𝑓)

Example
Φ = (𝑥, 𝑦; −𝑦, 𝑥) inMat2×2(ℤ) is polarised on 𝐴2 with degp(Φ) = 𝑥2 + 𝑦2
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Kani’s Lemma

𝐴𝑖 , 𝐵𝑗 PPAVs over 𝑘 , 𝜑𝑖𝑗 ∶ 𝐴𝑖 −→ 𝐵𝑗 polarised isogenies, char(𝑘) ∤ degp(𝜑𝑖𝑗)

Φ = (
𝜑11 𝜑21

𝜑12 𝜑22
) ∶ 𝐴1 × 𝐴2 −→ 𝐵1 × 𝐵2

is a polarised isogeny

⟺

𝐴1 𝐵1

𝐵2 𝐴2

𝜑11

−𝜑12 𝜑21

𝜑22

degp(𝜑11) = degp(𝜑22)
degp(𝜑12) = degp(𝜑21)

Then degp(Φ) = degp(𝜑11) + degp(𝜑21)

If additionally degp(𝜑11), degp(𝜑21) coprime and char(𝑘) ∤ degp(Φ) then

ker(Φ) = {(degp(𝜑11)𝑥 , 𝜑21𝜑11(𝑥)) ∣ 𝑥 ∈ 𝐴1[degp(Φ)]} ⊆ 𝐴1 × 𝐴2
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An Algorithm for constructing isogenies
of prescribed degree in dimension 2

Input: Integer 𝑢, Bound 𝐵, Set of small split primes 𝒮
Output: Isogeny 𝜑𝑢 with degree 𝑢

1. Attempt factorisation of 𝑢 with trial divisions up to 𝐵
2. Reject if prime 𝑝𝑖 ≡ 3 (mod 4), 𝑝𝑖 ∉ 𝒮 divides 𝑢 with odd multiplicity
3. Let 𝑔𝑢 product of primes 𝑝𝑖 ≡ 3 (mod 4) and 𝑝𝑖 ∈ 𝒮 that divide 𝑢 with odd
multiplicity
4. Then 𝑢/𝑔𝑢 = 𝑥2𝑢 + 𝑦2𝑢 .
5. Let 𝜓𝑢 be isogeny of degree 𝑔𝑢 , computed by sequence of 𝑝𝑖-isogenies using
Elkies’ algorithm
6. Return

𝜑𝑢 = (
𝜓𝑢 0
0 𝜓𝑢

) (
𝑥𝑢 𝑦𝑢
−𝑦𝑢 𝑥𝑢

)
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Working over 𝐹𝑝: Fast basis sampling

Let 𝑝 ≡ 7 (mod 8) and 𝐸/𝐹𝑝 oriented by ℤ [(√−𝑝 + 1) /2]

Then for 2𝑒 || 𝑝 + 1 we have

𝐸[2𝑒](𝐹𝑝 ) ≅ ℤ/2ℤ + ℤ/2𝑒−1ℤ

Let 𝑇desc, 𝑇horiz,1, 𝑇horiz,2 points of 2-torsion
Lemma
Let 𝐸 ∶ 𝑦2 = 𝑔(𝑥)
An element 𝑥𝑝 in 𝐹𝑝 lifts to 𝑃 = (𝑥𝑝 , 𝑦𝑝 )

(i) on 𝐸 with ord(𝑃) = 2𝑒−1 iff 𝑥(𝑝) − 𝑥(𝑇desc,1) a non-zero non-square
(and 𝑔(𝑥𝑝 ) non-zero square )
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Constructing isogenies of prescribed degree
In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider 𝛾1 = 𝑥1 + 𝑦1√Δ and 𝛾2 = 𝑥2 + 𝑦2√Δ in𝒪 = ℤ + √Δℤ
Then

𝛾 = (
𝛾1 𝛾1
−𝛾2 𝛾2

) ∶ 𝐸2 −→ 𝐸2 has degp(𝛾) = (𝑥21 + 𝑥22 ) + Δ(𝑦21 + 𝑦22 )

Idea If 𝑁 ≫ |Δ| then 𝑚 = 𝑁 − |Δ|(𝑦21 + 𝑦22 ) ≥ 0 often enough that we find
𝑚 = 𝑥21 + 𝑥22 as sum of squares

Heuristic If 𝑁 ≫ |Δ|, we can find endomorphism of 𝐸2 with polarised degree 𝑁
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Constructing isogenies of prescribed degree
In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let degp(𝛾) = 𝑁1𝑁2 with 𝑁𝑖 coprime
Then 𝛾 = 𝜇1𝜇2 = 𝜈2𝜈1 with degp(𝜇1) = 𝑁1 and degp(𝜈1) = 𝑁2

Then the 4-dimensional isogeny

Γ = (
𝜇1 𝜇2
−𝜈1 𝜈2

)

has polarised degree 𝑁 = 𝑁1 + 𝑁2 and kernel {(degp(𝜇1)𝑥 , 𝛾(𝑥)) ∣ 𝑥 ∈ 𝐸2[𝑁]}
Idea (Specific to Frobenius orientation)
Our 𝑢 ≈ √Δ = √𝑝
Set 𝑁 = 𝑢(2𝑒/2 − 𝑢) ≫ |Δ| = 𝑝 to get 4-dimensional isogeny Γ of degree 2𝑒/2

Obtain 𝑢-isogeny 𝜇𝑖 ∶ 𝐸2 −→ 𝐴𝑢 as component of Γ
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