

PEGASIS Practical Efficient Class Group Action using 4-dimensional isogenies

Joint with Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herledan Le Merdy, Riccardo Invernizzi, Damien Robert, Frederik Vercauteren and Benjamin Wesolowski

https://eprint.iacr.org/2025/401

Ryan Rueger IBM Research Zurich & Technical University of Munich

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange

$$\begin{array}{c} x \xrightarrow{g_A} & x_A = g_A x \\ & & g_B \\ & & \\ & & x_B = g_B x \end{array}$$

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange

Quantum resistance

Best known generic (quantum) algorithm to invert the action is subexponential

Easy to compute gx for all $g \in G$ and $x \in X$, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange

Quantum resistance

Best known generic (quantum) algorithm to invert the action is subexponential

Isogeny class-group action only known commutative, quantum resistant cryptographic group action

Abelian Variety (Formal)

Abelian Variety (Formal)

Group scheme over a field

Abelian Variety (Formal)

Group scheme over a field with one property from each set

- (i) projective, proper
- (ii) geometrically irreducible, irreducible, geometrically connected, connected
- (iii) smooth, geometrically reduced

Abelian Variety (Formal)

Group scheme over a field with one property from each set

- (i) projective, proper
- (ii) geometrically irreducible, irreducible, geometrically connected, connected
- (iii) smooth, geometrically reduced

Abelian Variety (Informal) Variety + Group Law

Abelian Variety (Formal)

Group scheme over a field with one property from each set

- (i) projective, proper
- (ii) geometrically irreducible, irreducible, geometrically connected, connected
- (iii) smooth, geometrically reduced

Abelian Variety (Informal) Variety + Group Law

Fact Elliptic curves are exactly 1-dim Abelian Varieties

Abelian Variety (Formal)

Group scheme over a field with one property from each set

- (i) projective, proper
- (ii) geometrically irreducible, irreducible, geometrically connected, connected
- (iii) smooth, geometrically reduced

Abelian Variety (Informal) Variety + Group Law

Fact Elliptic curves are exactly 1-dim Abelian Varieties

Isogeny Surjective morphism of Abelian Varieties

Abelian Variety (Formal)

Group scheme over a field with one property from each set

- (i) projective, proper
- (ii) geometrically irreducible, irreducible, geometrically connected, connected
- (iii) smooth, geometrically reduced

Abelian Variety (Informal) Variety + Group Law

Fact Elliptic curves are exactly 1-dim Abelian Varieties

Isogeny Surjective morphism of Abelian Varieties

First isomorphism theorem

$$\begin{split} \{G \subseteq A \text{ finite}\} &\leftrightarrow \{\text{separable isogenies } A \to *\}/\{\text{iso}\}\\ G \mapsto \varphi_G \text{ with } \ker(\varphi_G) = G \ (\deg(\varphi_G) = \#G)\\ \ker(\varphi) &\leftarrow \varphi \end{split}$$

Let ${\mathcal O}$ be an order inside an imaginary quadratic number field

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Construction Act by [A] in Cl(\mathcal{O}). Let $[\mathfrak{a}] = [A]$ with $\mathfrak{a} \subseteq \mathcal{O}$ integral

$$G_{\mathfrak{a}} = \bigcap_{\sigma \in \mathfrak{a}} \ker(\iota_{E}(\sigma)) \qquad \rightsquigarrow \qquad \varphi_{\mathfrak{a}} \colon E \to E_{\mathfrak{a}} \quad \text{with} \quad \ker(\varphi_{\mathfrak{a}}) = G_{\mathfrak{a}}$$

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Construction Act by [A] in Cl(\mathcal{O}). Let $[\mathfrak{a}] = [A]$ with $\mathfrak{a} \subseteq \mathcal{O}$ integral

$$G_{\mathfrak{a}} = \bigcap_{\sigma \in \mathfrak{a}} \ker(\iota_{E}(\sigma)) \qquad \rightsquigarrow \qquad \varphi_{\mathfrak{a}} : E \to E_{\mathfrak{a}} \quad \text{with} \quad \ker(\varphi_{\mathfrak{a}}) = G_{\mathfrak{a}}$$

Define $[\mathcal{A}] \cdot E = [\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Construction Act by [A] in Cl(\mathcal{O}). Let $[\mathfrak{a}] = [A]$ with $\mathfrak{a} \subseteq \mathcal{O}$ integral

$$G_{\mathfrak{a}} = \bigcap_{\sigma \in \mathfrak{a}} \ker(\iota_{E}(\sigma)) \qquad \rightsquigarrow \qquad \varphi_{\mathfrak{a}} : E \to E_{\mathfrak{a}} \quad \text{with} \quad \ker(\varphi_{\mathfrak{a}}) = G_{\mathfrak{a}}$$

Define $[\mathcal{A}] \cdot E = [\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$
Lemma $\deg(\varphi_{\mathfrak{a}}) = \mathsf{N}(\mathfrak{a})$

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Construction Act by [A] in Cl(O). Let $[\mathfrak{a}] = [A]$ with $\mathfrak{a} \subseteq O$ integral

$$G_{\mathfrak{a}} = \bigcap_{\sigma \in \mathfrak{a}} \ker(\iota_{E}(\sigma)) \quad \rightsquigarrow \quad \varphi_{\mathfrak{a}} \colon E \to E_{\mathfrak{a}} \quad \text{with} \quad \ker(\varphi_{\mathfrak{a}}) = G_{\mathfrak{a}}$$

Define $[\mathcal{A}] \cdot E = [\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Lemma deg($\varphi_{\mathfrak{a}}$) = N(\mathfrak{a})

Example (CSIDH) E/\mathbb{F}_p supersingular, $\iota_E : \mathbb{Z}[\sqrt{-p}] \to \text{End}(E); \sqrt{-p} \mapsto \pi$

Let \mathcal{O} be an order inside an imaginary quadratic number field An \mathcal{O} -orientation on a curve E is an injective ring morphism $\iota_E : \mathcal{O} \to \text{End}(E)$

Theorem $Cl(\mathcal{O})$ acts on isomorphism classes of oriented elliptic curves E

Construction Act by [A] in Cl(O). Let $[\mathfrak{a}] = [A]$ with $\mathfrak{a} \subseteq O$ integral

$$G_{\mathfrak{a}} = \bigcap_{\sigma \in \mathfrak{a}} \ker(\iota_{E}(\sigma)) \qquad \rightsquigarrow \qquad \varphi_{\mathfrak{a}} \colon E \to E_{\mathfrak{a}} \quad \text{with} \quad \ker(\varphi_{\mathfrak{a}}) = G_{\mathfrak{a}}$$

Define $[\mathcal{A}] \cdot E = [\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Lemma deg(φ_a) = N(a)

Example (CSIDH) E/\mathbb{F}_p supersingular, $\iota_E : \mathbb{Z}[\sqrt{-p}] \to \text{End}(E); \sqrt{-p} \mapsto \pi$

Theorem

The action on oriented supersingular elliptic curves is free and has at most 2

orbits

rueg.re/siam25

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$

Assume N(b), N(c) coprime

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Assume N(b), N(c) coprime

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

The Ideal2Isogeny Construction

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Norm equation $\deg_p(\Phi) = N(\mathfrak{b}) + N(\mathfrak{c}) \stackrel{!}{=} 2^f$

The Ideal2Isogeny Construction

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Norm equation $\deg_p(\Phi) = N(b) + N(c) \stackrel{!}{=} 2^f$ Strategy Find a, b equivalent ideals such that

1. $E[2^f]$ is \mathbb{F}_{p^2} -rational **2.** N(b), N(c) coprime

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_u : E \to E_u, \varphi_v : E \to E_v$

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_u : E \to E_u, \varphi_v : E \to E_v$ Assume $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime

$$E_{u} \xrightarrow{\widetilde{\varphi_{u}}} E \xrightarrow{\varphi_{b}} E_{a}$$

$$\downarrow \widetilde{\varphi_{c}}$$

$$E \\ \downarrow \varphi_{v}$$

$$E_{v}$$

$$\begin{array}{cccc} E_{u} & \stackrel{\widetilde{\varphi_{u}}}{\longrightarrow} & E & \stackrel{\varphi_{b}}{\longrightarrow} & E_{a} & & \Phi : & E_{u} \times E_{v} \to E_{a} \times E' \\ & & & & \downarrow^{\widetilde{\varphi_{c}}} & & \ker(\Phi) \\ & & & \Phi & E & & = \left\{ \left(u \mathsf{N}(b) x, \varphi_{v} \widetilde{\varphi_{c}} \varphi_{b} \widetilde{\varphi_{u}}(x) \right) \mid x \in E_{u}[\deg_{p}(\Phi)] \right\} \\ & & & \downarrow^{\varphi_{v}} & & = \left\{ \left(u \mathsf{N}(b) x, \varphi_{v} \varphi_{\overline{c}b} \widetilde{\varphi_{u}}(x) \right) \mid x \in E_{u}[\deg_{p}(\Phi)] \right\} \\ E' & \longrightarrow & E_{v} \end{array}$$

Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E \to E_u, \varphi_v : E \to E_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^{f}$

Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E \to E_u, \varphi_v : E \to E_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_{p}(\Phi) = uN(b) + vN(c) \stackrel{!}{=} 2^{f}$ Strategy Find a, b equivalent ideals and φ_{u}, φ_{v} such that

1. $E[2^{f}]$ is $\mathbb{F}_{p^{2}}$ -rational **2**. $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime **3**. Can compute φ_{u}, φ_{v}

rueg.re/siam25

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$

$$\begin{array}{ccc} A_u & \stackrel{\widetilde{\varphi_u}}{\longrightarrow} & E^d & \stackrel{\text{diag}(\varphi_b)}{\longrightarrow} & E^d_a \\ & & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ & & & E^d \\ & & & \downarrow \\ & & & \downarrow$$

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$ Assume $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime

$$\begin{array}{cccc} A_{u} & \stackrel{\widetilde{\varphi_{u}}}{\longrightarrow} & E^{d} & \stackrel{\text{diag}(\varphi_{\flat})}{\longrightarrow} & E^{d}_{\mathfrak{a}} & & \Phi : & A_{u} \times A_{v} \to E^{d}_{\mathfrak{a}} \times A \\ & & & \downarrow^{\text{diag}(\widetilde{\varphi_{c}})} & & \ker(\Phi) \\ & & \Phi & E^{d} & & = \left\{ \left(u \mathsf{N}(\mathfrak{b})x, \varphi_{v} \mathsf{diag}(\widetilde{\varphi_{c}}\varphi_{\mathfrak{b}})\widetilde{\varphi_{u}}(x) \right) \mid x \in A_{u}[\mathsf{deg}_{p}(\Phi)] \right\} \\ & & & \downarrow^{\varphi_{v}} & & = \left\{ \left(u \mathsf{N}(\mathfrak{b})x, \varphi_{v} \mathsf{diag}(\varphi_{\overline{c}\mathfrak{b}})\widetilde{\varphi_{u}}(x) \right) \mid x \in A_{u}[\mathsf{deg}_{p}(\Phi)] \right\} \\ A & \longrightarrow & A_{v} \end{array}$$

Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$ Assume uN(b), vN(c) coprime

$$\begin{array}{cccc} A_{u} & \xrightarrow{\widetilde{\varphi_{u}}} & E^{d} & \frac{\operatorname{diag}(\varphi_{\mathfrak{h}})}{\longrightarrow} E_{\mathfrak{a}}^{d} & \Phi : A_{u} \times A_{v} \to E_{\mathfrak{a}}^{d} \times A \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^{f}$

Want to compute
$$[a] \cdot E = E_a$$

Let $[a] = [b] = [c], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$
Assume $uN(b), vN(c)$ coprime

$$\begin{array}{cccc} A_{u} & \stackrel{\widetilde{\varphi_{u}}}{\longrightarrow} & E^{d} & \stackrel{\text{diag}(\varphi_{\flat})}{\longrightarrow} & E^{d}_{\mathfrak{a}} & & \Phi : & A_{u} \times A_{v} \to E^{d}_{\mathfrak{a}} \times A \\ & & & & \downarrow^{\text{diag}(\widetilde{\varphi_{c}})} & & \ker(\Phi) \\ & & \Phi & E^{d} & & = \left\{ \left(u \mathsf{N}(\mathfrak{b})x, \varphi_{v} \mathsf{diag}(\widetilde{\varphi_{c}}\varphi_{\mathfrak{b}})\widetilde{\varphi_{u}}(x) \right) \mid x \in A_{u}[\deg_{p}(\Phi)] \right\} \\ & & & \downarrow^{\varphi_{v}} & & = \left\{ \left(u \mathsf{N}(\mathfrak{b})x, \varphi_{v} \mathsf{diag}(\varphi_{\overline{c}\mathfrak{b}})\widetilde{\varphi_{u}}(x) \right) \mid x \in A_{u}[\deg_{p}(\Phi)] \right\} \\ A & \longrightarrow & A_{v} \end{array}$$

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^{f}$

Strategy Find $\mathfrak{a}, \mathfrak{b}$ equivalent ideals and φ_u, φ_v such that

1. $E[2^{f}]$ is $\mathbb{F}_{p^{2}}$ -rational **2.** $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime **3.** Can compute φ_{u}, φ_{v}

rueg.re/siam25

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(b) + vN(c) = 2^n$ when $2^n \ge N(b)N(c)$ (Coin Problem)

 $\deg_{p}(\Phi) = 2^{f} \text{ (Target solution of } uN(I) + vN(J) = 2^{f})$

Guaranteed solutions for $uN(b) + vN(c) = 2^n$ when $2^n \ge N(b)N(c)$ (Coin Problem) ...but Minkowski's bound only gives us b, c with $N(b), N(c) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$

 $\deg_{p}(\Phi) = 2^{f} \text{ (Target solution of } uN(I) + vN(J) = 2^{f})$

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n$

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

Rationality of kernel (Want $E[\deg_p(\Phi)] \subseteq E(\mathbb{F}_{p^2})$)

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

Rationality of kernel (Want $E[\deg_p(\Phi)] \subseteq E(\mathbb{F}_{p^2})$)

E supersingular, so $\#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!)

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

Rationality of kernel (Want $E[\deg_p(\Phi)] \subseteq E(\mathbb{F}_{p^2})$)

E supersingular, so $#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!) ...if $E[2^n] \subseteq E(\mathbb{F}_{p^2})$, then 2^n must divide p + 1 (because $#E[2^n] = 2^{2^n}$)

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

Rationality of kernel (Want $E[\deg_p(\Phi)] \subseteq E(\mathbb{F}_{p^2})$)

E supersingular, so $\#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!) ...if $E[2^n] \subseteq E(\mathbb{F}_{p^2})$, then 2^n must divide p+1 (because $\#E[2^n] = 2^{2n}$) ...in particular $2^n = 2^{\lfloor \log_2(p) \rfloor - \epsilon} < p$

 $\deg_{p}(\Phi) = 2^{f}$ (Target solution of $uN(I) + vN(J) = 2^{f}$)

Guaranteed solutions for $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^n$ when $2^n \ge N(\mathfrak{b})N(\mathfrak{c})$ (Coin Problem) ...but Minkowski's bound only gives us $\mathfrak{b}, \mathfrak{c}$ with $N(\mathfrak{b}), N(\mathfrak{c}) \approx \sqrt{\text{Disc}(\mathcal{O})} = \sqrt{p}$...empirical example when $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ we can only find $\mathfrak{b}, \mathfrak{c}$ with $p \le N(\mathfrak{b})N(\mathfrak{c}) \le 2p$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

Rationality of kernel (Want $E[\deg_p(\Phi)] \subseteq E(\mathbb{F}_{p^2})$)

E supersingular, so $\#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!) ...if $E[2^n] \subseteq E(\mathbb{F}_{p^2})$, then 2^n must divide p+1 (because $\#E[2^n] = 2^{2n}$) ...in particular $2^n = 2^{\lfloor \log_2(p) \rfloor - \epsilon} < p$

Core Problem

Even the smallest equivalent ideals are too big...but not by much

Recall

Ideals of $\mathcal O$ prime to the conductor factorise uniquely as product of prime ideals

Recall

Ideals of $\ensuremath{\mathcal{O}}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy"

Recall

Ideals of $\ensuremath{\mathcal{O}}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy" Compute easy part first

Recall

Ideals of $\ensuremath{\mathcal{O}}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy"

Compute easy part first and hope we can find a diagram with norm-equation

 $u\mathsf{N}(\mathfrak{b}_k) + v\mathsf{N}(\mathfrak{c}_k) = 2^f$
Solvability of the norm equation: An idea

Recall

Ideals of $\ensuremath{\mathcal{O}}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy"

Compute easy part first and hope we can find a diagram with norm-equation

 $u\mathsf{N}(\mathfrak{b}_k) + v\mathsf{N}(\mathfrak{c}_k) = 2^f$

Maybe then $N(\mathfrak{b}_k)N(\mathfrak{c}_k) \leq 2^f$, guaranteeing $u, v \geq 0$ solution

Solvability of the norm equation: An idea

Recall

Ideals of $\ensuremath{\mathcal{O}}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy"

Compute easy part first and hope we can find a diagram with norm-equation

 $u\mathsf{N}(\mathfrak{b}_k) + v\mathsf{N}(\mathfrak{c}_k) = 2^f$

Maybe then $N(\mathfrak{b}_k)N(\mathfrak{c}_k) \leq 2^f$, guaranteeing $u, v \geq 0$ solution "Easy" In practice Ensure $N(\mathfrak{b}_e), N(\mathfrak{c}_e)$ are products of small primes split in \mathcal{O} Solvability of the norm equation: An idea

Recall

Ideals of ${\cal O}$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $b = b_e b_k$, $c = c_e c_k$ with action of b_e , c_e "easy"

Compute easy part first and hope we can find a diagram with norm-equation

 $u\mathsf{N}(\mathfrak{b}_k) + v\mathsf{N}(\mathfrak{c}_k) = 2^f$

Maybe then $N(\mathfrak{b}_k)N(\mathfrak{c}_k) \leq 2^f$, guaranteeing $u, v \geq 0$ solution "Easy" In practice Ensure $N(\mathfrak{b}_e), N(\mathfrak{c}_e)$ are products of small primes split in \mathcal{O} Concretely $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Compute $[\mathfrak{b}_e] \cdot E$ with successive Elkies isogenies

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}_{k}) + vN(\mathfrak{c}_{k}) \stackrel{!}{=} 2^{f}$

Norm equation $\deg_p(\Phi) = uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) \stackrel{!}{=} 2^f$

 $\ker(\Phi) = \left\{ (u\mathsf{N}(\mathfrak{b}_e)x, \varphi_v \operatorname{diag}(\widetilde{\varphi_{\mathfrak{c}_k}}\varphi_{\mathfrak{b}_k})\widetilde{\varphi_u}(x)) \mid x \in \mathsf{A}_u[2^f] \right\} \quad \text{and} \quad \widetilde{\varphi_{\mathfrak{c}_k}}\varphi_{\mathfrak{b}_k} = \frac{1}{\mathsf{N}(\mathfrak{b}_e)\mathsf{N}(\mathfrak{c}_e)}\varphi_{\mathfrak{c}_e}\varphi_{\overline{\mathfrak{c}}\mathfrak{b}}\widetilde{\varphi_{\mathfrak{b}_e}}$

$$\begin{array}{c} E^{d} \\ & \downarrow^{diag(\varphi_{b_{e}})} \\ A_{u} \xrightarrow{\widetilde{\varphi_{u}}} & E^{d}_{b_{e}} \xrightarrow{diag(\varphi_{b_{k}})} E^{d}_{a} \\ & \downarrow^{diag(\widetilde{\varphi_{c_{k}}})} \\ & \downarrow^{diag(\widetilde{\varphi_{c_{k}}})} \\ \Phi & E^{d}_{c_{e}} \xleftarrow{diag(\varphi_{c_{e}})} E^{d} \\ & \downarrow^{\varphi_{v}} \\ A \xrightarrow{} & A_{v} \end{array}$$

Norm equation $\deg_p(\Phi) = uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) \stackrel{!}{=} 2^f$

$$\ker(\Phi) = \left\{ (uN(\mathfrak{b}_e)x, \varphi_v \operatorname{diag}(\widetilde{\varphi_{\mathfrak{c}_k}}\varphi_{\mathfrak{b}_k})\widetilde{\varphi_u}(x)) \mid x \in A_u[2^f] \right\} \quad \text{and} \quad \widetilde{\varphi_{\mathfrak{c}_k}}\varphi_{\mathfrak{b}_k} \stackrel{(*)}{=} \frac{1}{\mathsf{N}(\mathfrak{b}_e)\mathsf{N}(\mathfrak{c}_e)}\varphi_{\mathfrak{c}_e}\varphi_{\overline{\mathfrak{c}}\mathfrak{b}}\widetilde{\varphi_{\mathfrak{b}_e}}$$

rueg.re/siam25

Constructing isogenies of prescribed degree

The isogenies φ_u, φ_v

Constructing isogenies of prescribed degree The isogenies φ_u, φ_v

Dimension 1 www Dimension 2 Kani-isogeny Φ Requires knowledge of the endomorphism ring (SQISign2D)

Constructing isogenies of prescribed degree The isogenies φ_u, φ_v

Dimension 1 γγγ> Dimension 2 Kani-isogeny Φ Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 ···· Dimension 4 Kani-isogeny Φ Sums of squares

Constructing isogenies of prescribed degree The isogenies φ_u, φ_v

Dimension 1 www Dimension 2 Kani-isogeny Φ Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 ···· Dimension 4 Kani-isogeny Φ Sums of squares

Dimension 4 \rightsquigarrow Dimension 8 Kani-isogeny Φ Zahrin's trick

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^e - 1$, Set of small split primes \mathfrak{B} Output: Return $\mathfrak{b}_e, \mathfrak{b}_k, \mathfrak{c}_e, \mathfrak{c}_k, \varphi_u, \varphi_v$ such that $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f \le 2^{e-3}$

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^e - 1$, Set of small split primes \mathfrak{B} Output: Return $\mathfrak{b}_e, \mathfrak{b}_k, \mathfrak{c}_e, \mathfrak{c}_k, \varphi_u, \varphi_v$ such that $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f \le 2^{e-3}$

1. Perform lattice reduction on a to obtain small basis b_1, b_2

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^{e} - 1$, Set of small split primes \mathfrak{B} Output: Return $\mathfrak{b}_{e}, \mathfrak{b}_{k}, \mathfrak{c}_{e}, \mathfrak{c}_{k}, \varphi_{u}, \varphi_{v}$ such that $uN(\mathfrak{b}_{k}) + vN(\mathfrak{c}_{k}) = 2^{f} \leq 2^{e-3}$

1. Perform lattice reduction on \mathfrak{a} to obtain small basis b_1, b_2

2. Use b_1, b_2 to iterate over small ideals N(\mathfrak{b}) equivalent to \mathfrak{a}

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^e - 1$, Set of small split primes \mathfrak{B}

Output: Return $\mathfrak{b}_e, \mathfrak{b}_k, \mathfrak{c}_e, \mathfrak{c}_k, \varphi_u, \varphi_v$ such that $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f \le 2^{e-3}$

1. Perform lattice reduction on a to obtain small basis b_1, b_2

- 2. Use b_1, b_2 to iterate over small ideals N(\mathfrak{b}) equivalent to \mathfrak{a}
- 3. Factor the ideals $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$ so that $N(\mathfrak{b}_e)$ is a product of primes in \mathfrak{B}

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^{e} - 1$, Set of small split primes \mathfrak{B} Output: Return $\mathfrak{b}_{e}, \mathfrak{b}_{k}, \mathfrak{c}_{e}, \mathfrak{c}_{k}, \varphi_{u}, \varphi_{v}$ such that $uN(\mathfrak{b}_{v}) + vN(\mathfrak{c}_{v}) = 2^{f} \leq 2^{e-3}$

1. Perform lattice reduction on \mathfrak{a} to obtain small basis b_1, b_2

- 2. Use b_1, b_2 to iterate over small ideals N(\mathfrak{b}) equivalent to \mathfrak{a}
- 3. Factor the ideals $b = b_e b_k$ so that $N(b_e)$ is a product of primes in \mathfrak{B}

4. Choosing pairs $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$, try to solve $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f < 2^{e-3}$

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^{e} - 1$, Set of small split primes \mathfrak{B} Output: Return $\mathfrak{b}_{e}, \mathfrak{b}_{k}, \mathfrak{c}_{e}, \mathfrak{c}_{k}, \varphi_{u}, \varphi_{v}$ such that $uN(\mathfrak{b}_{v}) + vN(\mathfrak{c}_{v}) = 2^{f} \leq 2^{e-3}$

1. Perform lattice reduction on \mathfrak{a} to obtain small basis b_1, b_2

- 2. Use b_1, b_2 to iterate over small ideals N(\mathfrak{b}) equivalent to \mathfrak{a}
- 3. Factor the ideals $b = b_e b_k$ so that $N(b_e)$ is a product of primes in \mathfrak{B}
- 4. Choosing pairs $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$, try to solve $u \mathsf{N}(\mathfrak{b}_k) + v \mathsf{N}(\mathfrak{c}_k) = 2^f < 2^{e-3}$
- 5. Construct φ_u, φ_v as sums-of-squares (x, y; -y, x) matrices (plus some Elkies isogenies)

Input: $\mathfrak{a} \subset \mathcal{O}$, $p = c2^e - 1$, Set of small split primes \mathfrak{B}

Output: Return $\mathfrak{b}_e, \mathfrak{b}_k, \mathfrak{c}_e, \mathfrak{c}_k, \varphi_u, \varphi_v$ such that $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f \le 2^{e-3}$

1. Perform lattice reduction on a to obtain small basis b_1, b_2

- 2. Use b_1, b_2 to iterate over small ideals N(\mathfrak{b}) equivalent to \mathfrak{a}
- 3. Factor the ideals $b = b_e b_k$ so that $N(b_e)$ is a product of primes in \mathfrak{B}
- 4. Choosing pairs $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$, try to solve $u \mathsf{N}(\mathfrak{b}_k) + v \mathsf{N}(\mathfrak{c}_k) = 2^f < 2^{e-3}$
- 5. Construct φ_u, φ_v as sums-of-squares (x, y; -y, x) matrices (plus some Elkies isogenies)
- 6. Return $\mathfrak{b}_e, \mathfrak{b}_k, \varphi_u, \varphi_v$

Some data for the solvability of the norm equation

	Avg	Med	Min	Max
Time:	37.137	24.506	0.968	542.416
Rerandomisations:	0.499	0	0	11
$\log(2^f = u N(\mathfrak{b}_k) + v N(\mathfrak{c}_k))$	4076.080	4077	4058	4081
UV solutions tried:	38952.563	19701	10	548118
3-Elkies steps for $\varphi_{\mathfrak{b}_e}, \varphi_{\mathfrak{c}_e}$:	4.950	4	0	17
7-Elkies steps for $\varphi_{b_e}, \varphi_{c_e}$:	2.658	2	0	9
11-Elkies steps for $\varphi_{\mathfrak{b}_e}, \varphi_{\mathfrak{c}_e}$:	2.010	2	0	9
17-Elkies steps for $\varphi_{b_e}, \varphi_{c_e}$:	1.691	1	0	7
19-Elkies steps for $\varphi_{\mathfrak{b}_e}, \varphi_{\mathfrak{c}_e}$:	1.567	1	0	6
3-Elkies steps for φ_u, φ_v :	0.496	0	0	1
7-Elkies steps for φ_u, φ_v :	0.259	0	0	1
11-Elkies steps for φ_u, φ_v :	0.160	0	0	1
17-Elkies steps for φ_u, φ_v :	0.000	0	0	0
19-Elkies steps for φ_u, φ_v :	0.106	0	0	1

Table: Times, rerandomisations and elkies steps required for $p = 63 \cdot 2^{4084} - 1$.

Implementation Results

This all works!

		Lang.	500	1000	1500	2000	4000
Restricted	CSIDH*	С	40ms				
	SQALE*	С					5.75s**
	dCTIDH*	С				350ms**	
Unrestricted	SCALLOP*	C++	35s	750s			
	SCALLOP-HD*	Sage	88s	1140s			
	PEARL-SCALLOP*	C++	30s	58s	710s		
	Sage KLaPoTi Rust	Sage	207s				
		Rust	1.95s				
	PEGASIS	Sage	1.53s	4.21s	10.5s	21.3s	121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.rueg.re/siam25

Thank you for your attention

PEGASIS Paper https://eprint.iacr.org/2025/401 (To appear at Crypto'25)

PEGASIS Implementation https://github.com/pegasis4d

Slides https://rueg.re/siam25

Ask me anything (I have bonus slides!)

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$

A *Principally Polarised Abelian Variety* is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties

E, E' Elliptic curves $\varphi: E \rightarrow E'$ isogeny

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties

 $f: A \rightarrow B$ isogeny

 $\begin{array}{l} E, E' \mbox{ Elliptic curves} \\ \varphi: \ E \to E' \mbox{ isogeny} \\ \hat{\varphi} = \widetilde{\varphi}: \ E' \to E \mbox{ dual} \end{array}$

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties $f: A \rightarrow B$ isogeny $\tilde{f} = \lambda_B^{-1} f^{\vee} \lambda_A : B \rightarrow A$ polarised dual

E, E' Elliptic curves $\varphi: E \to E'$ isogeny $\hat{\varphi} = \tilde{\varphi}: E' \to E$ dual (They all are)

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties $f: A \rightarrow B$ isogeny $\tilde{f} = \lambda_B^{-1} f^{\vee} \lambda_A : B \rightarrow A$ polarised dual f is polarised isogeny if $\tilde{f}f = [d]_A$ *E*, *E'* Elliptic curves $\varphi : E \to E'$ isogeny $\hat{\varphi} = \tilde{\varphi} : E' \to E$ dual (They all are) $\deg_p(\varphi) = \deg(\varphi)$

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties $f: A \rightarrow B$ isogeny $\tilde{f} = \lambda_B^{-1} f^{\vee} \lambda_A : B \rightarrow A$ polarised dual f is polarised isogeny if $\tilde{f}f = [d]_A$...it has polarised degree deg_p(f) = d E, E' Elliptic curves $\varphi: E \to E'$ isogeny $\hat{\varphi} = \tilde{\varphi}: E' \to E$ dual (They all are) $\deg_p(\varphi) = \deg(\varphi)$

A Principally Polarised Abelian Variety is an Abelian variety A together with an isomorphism $\lambda_A : A \xrightarrow{\sim} A^{\vee}$ (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties $f: A \to B$ isogeny $\tilde{f} = \lambda_B^{-1} f^{\vee} \lambda_A : B \to A$ polarised dual f is polarised isogeny if $\tilde{f}f = [d]_A$...it has polarised degree deg_p(f) = d E, E' Elliptic curves $\varphi: E \to E'$ isogeny $\hat{\varphi} = \tilde{\varphi}: E' \to E$ dual (They all are) $\deg_{p}(\varphi) = \deg(\varphi)$

Example

 $\operatorname{diag}_d(f): A^d \to B^d$ is polarised (if f is) and $\operatorname{deg}_p(\operatorname{diag}_d(f)) = \operatorname{deg}_p(f)$

Example

 $\Phi = (x, y; -y, x)$ in $Mat_{2 \times 2}(\mathbb{Z})$ is polarised on A^2 with $deg_p(\Phi) = x^2 + y^2$

 A_i, B_j PPAVs over $k, \varphi_{ij} : A_i \rightarrow B_j$ polarised isogenies, char(k) $\nmid \deg_p(\varphi_{ij})$

 A_i, B_j PPAVs over $k, \varphi_{ij} : A_i \rightarrow B_j$ polarised isogenies, char(k) $\nmid \deg_p(\varphi_{ij})$

$$\Phi = \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} : A_1 \times A_2 \to B_1 \times B_2 \qquad \Longleftrightarrow \qquad \begin{array}{c} A_1 & \xrightarrow{-\mu} & B_1 \\ & & & \downarrow \\ & & \downarrow \\ B_2 & \xrightarrow{-\varphi_{12}} & & \downarrow \\ & & & B_2 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$$

Φ11

 $\deg_{p}(\varphi_{12}) = \deg_{p}(\varphi_{21})$

 A_i, B_j PPAVs over $k, \varphi_{ij} : A_i \rightarrow B_j$ polarised isogenies, char(k) $\nmid \deg_p(\varphi_{ij})$

$$\Phi = \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} : A_1 \times A_2 \to B_1 \times B_2 \qquad \Longleftrightarrow \qquad \begin{array}{c} A_1 & \xrightarrow{- \varphi_{12}} & B_1 \\ & & \downarrow & \downarrow \\ B_2 & \xrightarrow{- \varphi_{12}} & A_2 \\ & & B_2 & \xrightarrow{- \varphi_{12}} & A_2 \\ & & & B_2 & \xrightarrow{- \varphi_{22}} & A_2 \\ & & & deg_p(\varphi_{11}) = deg_p(\varphi_{22}) \\ & & & deg_p(\varphi_{12}) = deg_p(\varphi_{21}) \end{array}$$

Then $\deg_p(\Phi) = \deg_p(\varphi_{11}) + \deg_p(\varphi_{21})$

Φ11

 A_i, B_j PPAVs over $k, \varphi_{ij} : A_i \rightarrow B_j$ polarised isogenies, char(k) $\nmid \deg_p(\varphi_{ij})$

Then $\deg_p(\Phi) = \deg_p(\varphi_{11}) + \deg_p(\varphi_{21})$

If additionally deg_p(φ_{11}), deg_p(φ_{21}) coprime and char(k) \nmid deg_p(Φ) then

$$\ker(\Phi) = \left\{ \left(\deg_{p}(\varphi_{11})x, \widetilde{\varphi_{21}}\varphi_{11}(x) \right) \mid x \in A_{1}[\deg_{p}(\Phi)] \right\} \subseteq A_{1} \times A_{2}$$

rueg.re/siam25

....

An Algorithm for constructing isogenies of prescribed degree in dimension 2

Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u* An Algorithm for constructing isogenies of prescribed degree in dimension 2

Input: Integer u, Bound B, Set of small split primes SOutput: Isogeny φ_u with degree u

1. Attempt factorisation of *u* with trial divisions up to *B*

An Algorithm for constructing isogenies of prescribed degree in dimension 2

Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u*

- 1. Attempt factorisation of *u* with trial divisions up to *B*
- 2. Reject if prime $p_i \equiv 3 \pmod{4}$, $p_i \notin S$ divides *u* with odd multiplicity
Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u*

- 1. Attempt factorisation of *u* with trial divisions up to *B*
- 2. Reject if prime $p_i \equiv 3 \pmod{4}$, $p_i \notin S$ divides *u* with odd multiplicity
- 3. Let g_u product of primes $p_i \equiv 3 \pmod{4}$ and $p_i \in S$ that divide u with odd multiplicity

Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u*

- 1. Attempt factorisation of *u* with trial divisions up to *B*
- 2. Reject if prime $p_i \equiv 3 \pmod{4}$, $p_i \notin S$ divides *u* with odd multiplicity
- 3. Let g_u product of primes $p_i \equiv 3 \pmod{4}$ and $p_i \in S$ that divide u with odd multiplicity

4. Then $u/g_u = x_u^2 + y_u^2$.

Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u*

- 1. Attempt factorisation of *u* with trial divisions up to *B*
- 2. Reject if prime $p_i \equiv 3 \pmod{4}$, $p_i \notin S$ divides *u* with odd multiplicity
- 3. Let g_u product of primes $p_i \equiv 3 \pmod{4}$ and $p_i \in S$ that divide u with odd multiplicity
- 4. Then $u/g_u = x_u^2 + y_u^2$.

5. Let ψ_u be isogeny of degree g_u , computed by sequence of p_i -isogenies using Elkies' algorithm

Input: Integer *u*, Bound *B*, Set of small split primes SOutput: Isogeny φ_u with degree *u*

- 1. Attempt factorisation of *u* with trial divisions up to *B*
- 2. Reject if prime $p_i \equiv 3 \pmod{4}$, $p_i \notin S$ divides *u* with odd multiplicity
- 3. Let g_u product of primes $p_i \equiv 3 \pmod{4}$ and $p_i \in S$ that divide u with odd multiplicity
- 4. Then $u/g_u = x_u^2 + y_u^2$.

5. Let ψ_u be isogeny of degree g_u , computed by sequence of p_i -isogenies using Elkies' algorithm

6. Return

$$\varphi_{u} = \begin{pmatrix} \psi_{u} & 0 \\ 0 & \psi_{u} \end{pmatrix} \begin{pmatrix} x_{u} & y_{u} \\ -y_{u} & x_{u} \end{pmatrix}$$

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e || p + 1$ we have

$$E[2^{e}](F_{p}) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e ||p+1$ we have

$$E[2^e](F_p) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let T_{desc} , $T_{horiz,1}$, $T_{horiz,2}$ points of 2-torsion

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e || p + 1$ we have

$$E[2^e](F_p) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let T_{desc} , $T_{horiz,1}$, $T_{horiz,2}$ points of 2-torsion Lemma Let E : $y^2 = g(x)$ An element x_p in F_p lifts to $P = (x_p, y_p)$

- (i) on E with ord(P) = 2^{e-1} iff $x(p) x(T_{desc,1})$ a non-zero non-square (and $g(x_p)$ non-zero square)
- (ii) on E^t with ord(P) = 2^{e-1} iff $x(p) x(T_{desc,2})$ non-zero square (and $g(x_p)$ a non-zero non-square)

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider
$$\gamma_1 = x_1 + y_1 \sqrt{\Delta}$$
 and $\gamma_2 = x_2 + y_2 \sqrt{\Delta}$ in $\mathcal{O} = \mathbb{Z} + \sqrt{\Delta}\mathbb{Z}$

Consider
$$\gamma_1 = x_1 + \gamma_1 \sqrt{\Delta}$$
 and $\gamma_2 = x_2 + \gamma_2 \sqrt{\Delta}$ in $\mathcal{O} = \mathbb{Z} + \sqrt{\Delta}\mathbb{Z}$.
Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

Consider
$$\gamma_1 = x_1 + \gamma_1 \sqrt{\Delta}$$
 and $\gamma_2 = x_2 + \gamma_2 \sqrt{\Delta}$ in $\mathcal{O} = \mathbb{Z} + \sqrt{\Delta}\mathbb{Z}$
Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

Idea If $N \gg |\Delta|$ then $m = N - |\Delta|(y_1^2 + y_2^2) \ge 0$ often enough that we find $m = x_1^2 + x_2^2$ as sum of squares

Consider
$$\gamma_1 = x_1 + y_1 \sqrt{\Delta}$$
 and $\gamma_2 = x_2 + y_2 \sqrt{\Delta}$ in $\mathcal{O} = \mathbb{Z} + \sqrt{\Delta}\mathbb{Z}$.
Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

Idea If $N \gg |\Delta|$ then $m = N - |\Delta|(y_1^2 + y_2^2) \ge 0$ often enough that we find $m = x_1^2 + x_2^2$ as sum of squares

Heuristic If $N \gg |\Delta|$, we can find endomorphism of E^2 with polarised degree N

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N = N_1 + N_2$ and kernel $\{(\deg_p(\mu_1)x, \gamma(x)) \mid x \in E^2[N]\}$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N = N_1 + N_2$ and kernel $\{(\deg_p(\mu_1)x, \gamma(x)) \mid x \in E^2[N]\}$ Idea (Specific to Frobenius orientation)

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N = N_1 + N_2$ and kernel $\{(\deg_p(\mu_1)x, \gamma(x)) \mid x \in E^2[N]\}$ Idea (Specific to Frobenius orientation) Our $u \approx \sqrt{\Delta} = \sqrt{p}$ Set $N = u(2^{e/2} - u) \gg |\Delta| = p$ to get 4-dimensional isogeny Γ of degree $2^{e/2}$ Obtain *u*-isogeny $\mu_i : E^2 \to A_u$ as component of Γ