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Cryptographic Group Actions

Easy to compute gx forall g € G and x € X, but hard to recover g from (x, gx)

Example Commutative group gives Non-Interactive Key-Exchange
-7
X ————— Xy = gpX
3B 3B
Xg = 3pX 3—A> 388X = 8p8aX

Quantum resistance
Best known generic (quantum) algorithm to invert the action is subexponential

Isogeny class-group action only known commutative, quantum resistant
cryptographic group action
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Abelian Varieties & Isogenies
Abelian Variety (Formal)
Group scheme over a field with one property from each set
(i) projective, proper
(i) geometrically irreducible, irreducible, geometrically connected, connected
(iii) smooth, geometrically reduced
Abelian Variety (Informal) Variety + Group Law
Fact Elliptic curves are exactly 1-dim Abelian Varieties
Isogeny Surjective morphism of Abelian Varieties
First isomorphism theorem
{G c Afinite} «» {separable isogenies A — x}/ {iso}
G — @g with ker(pg) = G (deg(pg) = #G)
ker(g) < @
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The isogeny class-group action

Let O be an order inside an imaginary quadratic number field
An O-orientation on a curve E is an injective ring morphism (r : O — End(E)
Theorem CI(O) acts on isomorphism classes of oriented elliptic curves E
Construction Act by [A] in CI(O). Let [a] = [A] with a C O integral

G, =[\ker(glo))  ~  @,: E>E, with ker(p,)=G,

o€a
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The isogeny class-group action
Let O be an order inside an imaginary quadratic number field
An O-orientation on a curve E is an injective ring morphism (r : O — End(E)
Theorem CI(O) acts on isomorphism classes of oriented elliptic curves E
Construction Act by [A] in CI(O). Let [a] = [A] with a C O integral

G, =[ker(glo) v @, E—>E, with ker(o,)=G,

o€a

Define [A]-E=[a] -E=E,
Lemma deg(p,) = N(a)
Example (CSIDH) E/F, supersingular, i : Z[,/=p] = End(E);\/-p = 1

Theorem
The action on oriented supersingular elliptic curves is free and has at most 2
orbits
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The Ideal2Isogeny Construction
Want to compute [a] - E = E,
Let [a] = [b] = [¢]
Assume N(b), N(c) coprime

E Al s E

a

®: EXE—E,XE'
P @, ker(®) = {(N(b)x,fﬁ;(pb(x)) | x € E[degp((b)]}
= {(N(©)x, 9(x) | x € Eldeg,(®)]]

rueg.re/siam25 5/14


https://rueg.re/siam25

The Ideal2Isogeny Construction
Want to compute [a] - E = E,
Let [a] = [b] = [¢]
Assume N(b), N(c) coprime

E Al s E

a

®: EXE—E,XE'
P @, ker(®) = {(N(b)x,fﬁ;(pb(x)) | x € E[degp((b)]}
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2 2
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The Ideal2Isogeny Construction
Want to compute [a] - E = E,
Let [a] = [b] = [¢]
Assume N(b), N(c) coprime

E Al s E

a

®: EXE—E,XE'
P @, ker(®) = {(N(b)x,fﬁ;(pb(x)) | x € E[degp((b)]}
= {(N(©)x, 9(x) | x € Eldeg,(®)]]

2 2

E’ > E

Norm equation deg,(®) = N(b) + N(c) = of
Strategy Find a, b equivalent ideals such that

1. E[2"is Fo-rational 2. N(b), N(c) coprime
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The Ideal2Isogeny Construction: Iteration #2

Want to compute [a] - E = E,

Let[a] =[b] =[c],,: E> E,,@,: E>E,

Assume uN(b), vN(c) coprime
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The Ideal2Isogeny Construction: Iteration #2

Want to compute [a] - E = E,
Let[a] =[b] =[c],,: E> E,,@,: E>E,
Assume uN(b), vN(c) coprime

Py (pb

E, > E > E,
@.

E
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The Ideal2Isogeny Construction: Iteration #2

Want to compute [a] - E = E,
Let[a] =[b] =[c],,: E> E,,@,: E>E,
Assume uN(b), vN(c) coprime
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The Ideal2Isogeny Construction: Iteration #2
Want to compute [a] - E = E,
Let[a] =[b] =[c],,: E> E,,@,: E>E,
Assume uN(b), vN(c) coprime
E, — E — E, ®:E,xE, » E,xE
P, ker(®)
® E ={(uN(b)x, 0,50, B, (x)) | x € E, [deg, ()]
o, ={(uN@EIX 0,0,8,00) | x € E,[deg, ()]}
E ) E,
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The Ideal2Isogeny Construction: Iteration #2
Want to compute [a] - E = E,
Let[a] =[b] =[c],,: E> E,,@,: E>E,
Assume uN(b), vN(c) coprime
E, — E — E, ®:E,xE, » E,xE
P, ker(®)
® E ={(uN(b)x, 0,50, B, (x)) | x € E, [deg, ()]
o, ={(uN@EIX 0,0,8,00) | x € E,[deg, ()]}
E ) E,

Norm equation deg,(®) = uN(b) + vN(c) = of

rueg.re/siam25

6/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration #2

Want to compute [a] - E = E,
Let[a] =[b] =[c],p,: E>E,,@,: E>E,
Assume uN(b), vN(c) coprime

E, > E > Eq ®: E,xE, > E,xE'
o. ker(®)
o  E  =[NoXo,@eE0) | x €E,[deg, ()]
o, ={UNWEX0,0400) | x € E,[deg,(®)]}
E ) E,

Norm equation deg,(®) = uN(b) + vN(c) = of
Strategy Find a, b equivalent ideals and ¢,, ¢, such that

1. E[2f]is Fp2-rational 2. uN(b),vN(c) coprime 3. Can compute ¢, ¢,

rueg.re/siam25

6/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,

rueg.re/siam25 7/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,
Let [a] = [b] = [¢]

rueg.re/siam25 7/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,
let[a]=[b] =[c], @, : EY = A, 0, : EY = A,

rueg.re/siam25 7/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,
let[a]=[b] =[c], @, : EY = A, 0, : EY = A,
Assume uN(b), vN(c) coprime

rueg.re/siam25 7/14


https://rueg.re/siam25

The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,
let[al = [b] =[c], @, : E9 = A, @,: E9 = A,
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The Ideal2Isogeny Construction: Iteration i3

Want to compute [a] - E = E,
let[al = [b] =[c], @, : E9 = A, @,: E9 = A,
Assume uN(b), vN(c) coprime

@, d diag(cpg) £d

A, y E ;
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The Ideal2Isogeny Construction: Iteration i3
Want to compute [a] - E = E,
Let[a] =[b] =[c], @,: E* = A,, @, : E9 = A,
Assume uN(b), vN(c) coprime

@, g diagle,) gd

Ar — E > Eq ®: A, XA, = Elx A
diag(®;) ker(®)
o ~ {(uN©)x. 0, diag(@0,)F () | x € A,[deg,(®)]}
o = {(uN()x, 0, diag(0:,)3, () | x € A,[deg,(®)]}
A ' A
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The Ideal2Isogeny Construction: Iteration i3
Want to compute [a] - E = E,
Let[a] =[b] =[c], @,: E* = A,, @, : E9 = A,
Assume uN(b), vN(c) coprime

@, g diagle,) gd

Ar — E > Eq ®: A, XA, = Elx A
diag(;) ker(®P)
o = [(uN(o)x, 9, diag(F.0,)5,(x)) | x € A, [deg, ()]
o = {(uN()x, 0, diag(0:,)3, () | x € A,[deg,(®)]}
A A,

Norm equation deg,(®) = uN(b) + vN(c) = of
Strategy Find a, b equivalent ideals and ¢, ¢, such that

1. E[2f]is Fp2-rational 2. uN(b),vN(c) coprime 3. Can compute ¢, ¢,
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Solvability of the norm equation: Conflict

deg, (®) = 2 (Target solution of uN(I) + vN() = 2)
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Solvability of the norm equation: Conflict

degp((D) = 2f (Target solution of uN(I) + vN(J) = 2f

Guaranteed solutions for uN(b) + vN(c) = 2" when 2" > N(b)N(c) (Coin Problem)
...but Minkowski’s bound only gives us b, ¢ with N(b), N(c) = /Disc(O) = \/p
...empirical example when O = Z[,/—p] we can only ﬁnd b, cwithp < N(b) (¢)<2p

.50 p < 2" = 2lloga(p)]
Rationality of kernel (want E[deg,(®)] € E(F,2))

E supersingular, so #E([F )=(p+ 1)2 (Need supersingularity!)
WLFE[27] C E( 2), then 2" must divide p + 1 (because #E[2"] = 22")
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...but Minkowski’s bound only gives us b, ¢ with N(b), N(c) = /Disc(O) = \/p

~.empirical example when O = Z[,/~p] we can only ﬁnd b, cwith p < N(b) (c) < 2p
.50 p < 2" = 2lloga(p)]

Rationality of kernel (want E[deg,(®)] € E(F,2))

E supersingular, so #E([F )=(p+ 1)2 (Need supersingularity!)
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...in particular 2” = 2llogalP)l-¢

rueg.re/siam25 8/14


https://rueg.re/siam25

Solvability of the norm equation: Conflict

degp((D) = 2f (Target solution of uN(I) + vN(J) = 2f

Guaranteed solutions for uN(b) + vN(c) = 2" when 2" > N(b)N(c) (Coin Problem)

...but Minkowski’s bound only gives us b, ¢ with N(b), N(c) =~ /Disc(O) = /p
...empirical example when O = Z[,/-p] we can only ﬁnd b, ¢ withp < N(b)N(c) < 2p
.50 p < 2" = 2lloga(p)]

Rationality of kernel (want E[deg,(®)] € E(F,2))

E supersingular, so #E([F )=(p+ 1)2 (Need supersingularity!)
WLFE[27] C E( 2), then 2" must divide p + 1 (because #E[2"] = 22")
...in particular 2” = 2llogalP)l-¢

Core Problem
Even the smallest equivalent ideals are too big...but not by much
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Solvability of the norm equation: An idea

Recall
Ideals of O prime to the conductor factorise uniquely as product of prime ideals
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Solvability of the norm equation: An idea

Recall

Ideals of O prime to the conductor factorise uniquely as product of prime ideals
Idea

Factor the ideals b = b,b,, ¢ = ¢, with action of b, ¢, “easy”

Compute easy part first and hope we can find a diagram with norm-equation

uN(b,) + vN(c,) = 2f

Maybe then N(b,)N(c,) < 2f, guaranteeing u,v > 0 solution
“Easy” In practice

Ensure N(b,),N(c,) are products of small primes split in O
Concretely O = Z[,[-p]

Compute [b,] - E with successive Elkies isogenies
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Solvability of the norm equation: The diagram

E;d
diag(ey,)
(’5:, d diag((Pbk) d

A, —— El —— Fd

diag(®,)

d

@y

-

A > A,

<

<
N
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Solvability of the norm equation: The diagram

E;d
diag(ey,)
(’5:, d diag((Pbk) d
Ay — £, — E;
diag(®,)
P E9
¢ diag(o,,)
@,
A > A,
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Solvability of the norm equation: The diagram

E;d
diag(ey,)
N diag(o, )
®, 8l
A, —— E;’e — E¢
diag(®,)
@ E9
¢ diag(e,,)
@,
A > A,

Norm equation deg,(®) = uN(by) + vN(c,) ~ of
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Solvability of the norm equation: The diagram

Ed
diag(e,,)
N diag(o, )
®, 8l
A, — E{j’e — E¢
diag(®,,)
@ Ed +— E
¢ diag(o,,)
@,
A > A,

Norm equation deg,(®) = uN(by) + vN(g) = 2

e\~ — 1 —
ker(®) = {(uN(be)x, ¢, diag(@ @y, )B,0) | x € A[211} and Gy, =10, 0y,
e e
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Solvability of the norm equation: The diagram

Ed
diag(ey,)
(’5:, d diag((Pbk) Ed

Au ? Ebe } a

d|ag("(56:) (‘pE[’l = (pc(pb = (\Dre(pck (\Ohk (pbe
® Ed d
¢ diag(o,,)
@,
A > A,

Norm equation deg,(®) = uN(by) + vN(c,) ~ of

o ~ — ) 1 —
ker(®) = {(uN(be)x, ¢, diag(@ @, )B,0) | x € A2} and By, =m0, 0P,
e e
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Constructing isogenies of prescribed degree

The isogenies @, @,
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The isogenies @, @,

Dimension 1 ~ws Dimension 2 Kani-isogeny ®
Requires knowledge of the endomorphism ring (SQISign2D)
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Constructing isogenies of prescribed degree

The isogenies ¢, @,

Dimension 1 ~ws Dimension 2 Kani-isogeny ®
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 ~«ws Dimension 4 Kani-isogeny ®
Sums of squares

Dimension 4 ~ws Dimension 8 Kani-isogeny ®
Zahrin’s trick
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An algorithm for solving the norm equation

Input: a € O, p = c2® — 1, Set of small split primes B
Output: Return by, by, ¢,, ¢y, ®,, @, such that uN(b,) + vN(c,) = 2f < 2¢73
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An algorithm for solving the norm equation

Input: a € O, p = c2® — 1, Set of small split primes B
Output: Return by, by, ¢,, ¢y, ®,, @, such that uN(b,) + vN(c,) = 2f < 2¢73

. Perform lattice reduction on a to obtain small basis by, b,

. Use by, b, to iterate over small ideals N(b) equivalent to a

. Factor the ideals b = b, b, so that N(b,) is a product of primes in B

. Choosing pairs b = b,by, ¢ = c ¢, try to solve uN(b,) + vN(c, ) = 2f < 2¢73

. Construct @, @, as sums-of-squares (x,y; —y, x) matrices (plus some Elkies isogenies)

o O B WN PP

. Return b,, by, @,, @,
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Some data for the solvability of the norm equation

Avg Med Min Max

Time: 37.137 24.506 0.968 542.416

Rerandomisations: 0.499 0 0 11

log(2f = uN(by) + vN(cy)) 4076.080 4077 4058 4081
UV solutions tried:  38952.563 19701 10 548118

3-Elkies steps for @p,r P, 4.950 4 0 17
7-Elkies steps for Py, P, 2.658 2 0 9
11-Elkies steps for @y, @, : 2.010 2 0 9
17-Elkies steps for ¢, @, 1.691 1 0 7
19-Elkies steps for @y, P, 1.567 1 0 6
3-Elkies steps for @, @, : 0.496 0 0 1
7-Elkies steps for @, @, : 0.259 0 0 1
11-Elkies steps for ¢, @, : 0.160 0 0 1
17-Elkies steps for @, @, : 0.000 0 0 0
19-Elkies steps for @, @, : 0.106 0 0 1

Table: Times, rerandomisations and elkies steps required for p = 63 -
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Implementation Results
This all works!

Lang. | 500 1000 1500 2000 4000
- CSIDH* C 40ms
g SQALE* C 5.755**
N dCTIDH* C 350ms**

SCALLOP* C++ | 35s  750s

SCALLOP-HD* Sage 88s 1140s
PEARL-SCALLOP*  C++ 30s 58s 710s

Unrestricted

. Sage 207s
KLaPoTi
Rust 1.95s
PEGASIS Sage | 1.53s 4.21s 10.5s 21.3s 121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.
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Thank you for your attention

PEGASIS Papel’ httpS//eprlnt|acr0rg/2025/401 (To appear at Crypto’25)
PEGASIS Implementation https://github.com/pegasis4d

Slides https://rueg.re/siam25

Ask me anything (I have bonus slides!)


https://eprint.iacr.org/2025/401
https://github.com/pegasis4d
https://rueg.re/siam25

Higher dimensional isogenies

A Principally Polarised Abelian Variety is an Abelian variety A together with an
isomorphism A, : A= AY

rueg.re/siam25

1/6


https://rueg.re/siam25

Higher dimensional isogenies
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isomorphism A, : A = AY (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties E,E' Elliptic curves
¢@: E— E'isogeny
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Higher dimensional isogenies

A Principally Polarised Abelian Variety is an Abelian variety A together with an
isomorphismA,: A= AY (which is induced by an ample divisor)

PPAVs vs Elliptic Curves

A, B Principally Polarised Abelian Varieties E,E' Elliptic curves

f: A— Bisogeny @: E— E'isogeny

f=2zfYA4: B> Apolarised dual ®=@: E' - E dual

f is polarised isogeny if ff = [d], (They all are)

...it has polarised degree deg,(f) = d deg, () = deg(op)
Example

diagy(f) : A% » B%is polarised (if f is) and deg, (diagy(f)) = deg,(f)

Example
® = (x,y; -y, X) in Mat,,,(Z) is polarised on A? with deg,(®) = x? + y?
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Kani’'s Lemma

A;,B; PPAVs over k, @;; : A; = B; polarised isogenies, char(k) + deg,(¢;;)
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Kani’'s Lemma

A;,B; PPAVs over k, @;; : A; = B; polarised isogenies, char(k) + deg,(¢;;)

0]
A, —— B,

o = (‘p“ ‘p21) : Ay x A, > B; XB, - “"1{ l@i
P12 P22

By ——— A,

is a polarised isogeny #22

deg,(pq1) = deg,(@y,)
deg,(¢1,) = deg,(py4)
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Kani’'s Lemma

A;,B; PPAVs over k, @;; : A; = B; polarised isogenies, char(k) + deg,(¢;;)

1"~

d>=((p“ ‘p21) : Ay X A, = By X B,
$12 P22

is a polarised isogeny

Then deg,(®) = deg,(@11) + deg,(@,1)

rueg.re/siam25
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A, —= B,
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By ——— A,

®22
deg,(pq1) = deg,(@y,)
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Kani’'s Lemma

A;,B; PPAVs over k, @;; : A; = B; polarised isogenies, char(k) + deg,(¢;;)

0]
A, —— B,

o = (“’11 ‘p21) : Ay x A, > B; XB, - “"1{ l@i
P12 P22

By ——— A,

®22
deg,(pq1) = deg,(@y,)
deg,(¢1,) = deg,(py4)

is a polarised isogeny

Then deg,(®) = deg,(¢,4) + deg,(p,;)
[f additionally deg,(¢44), deg,(®,4) coprime and char (k) 1 deg,(®) then

ker(®) = {(degp((Pn)X, (T’EE(P11(X)) | x € A1[degp(¢)]} C AL XA
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An Algorithm for constructing isogenies

of prescribed degree in dimension 2

Input: Integer u, Bound B, Set of small split primes S
Output: Isogeny ¢, with degree u
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An Algorithm for constructing isogenies

of prescribed degree in dimension 2

Input: Integer u, Bound B, Set of small split primes S

Output: Isogeny ¢, with degree u

1. Attempt factorisation of u with trial divisions up to B

2. Reject if prime p; = 3 (mod 4), p; € S divides u with odd multiplicity

3. Let g, product of primes p; = 3 (mod 4) and p; € S that divide u with odd
multiplicity

4. Thenu/g, = x2 +y2.

5. Let ¢, be isogeny of degree g, computed by sequence of p;-isogenies using
Elkies’ algorithm

6. Return
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Working over F,: Fast basis sampling

Letp =7 (mod 8) and E/F, oriented by Z [(,/-p + 1) /2]
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Working over F,: Fast basis sampling

Letp =7 (mod 8) and E/F, oriented by Z [(,/-p + 1) /2]
Then for 2¢||p + 1 we have

E[2°(F,) =2 /o7 +Z/2¢-17
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Working over F,: Fast basis sampling

Letp =7 (mod 8) and E/F, oriented by Z [(,/-p + 1) /2]
Then for 2¢||p + 1 we have

E[2°(F,) =2 /o7 +Z/2¢-17

Let Tyese> Thoriz 1+ Thoriz,2 POINts of 2-torsion
Lemma
Let E : y? = g(x)
An element x, in F, lifts to P = (x,,y))
(i) on E with ord(P) = 2¢71 iff x(p) — X(Tyesc.1) @ NON-ZErO NON-SQUAre
(and g(x,) non-zero square )
(i) on E* with ord(P) = 2671 iff x(p) — X(Tyesc o) NON-ZETO SQUareE
(and g(x,) a non-zero non-square)
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = xq + yl\/z and y, = x, + yz\/z inO=7Z+/AZ
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = xq + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Vi V1
y= ( ; y_l) tE2>E? has  deg,(y) = (x +x3) + Alyf +y3)
~V2 V2
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = xq + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Vi V1
= ( ; y_l) tE2>E? has  deg,(y) = (x +x3) + Alyf +y3)
Y2 V2

Idea If N > |A| then m = N — |A|(y? + y2) > O often enough that we find
m = x2 + x2 as sum of squares
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = xq + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Vi V1
= ( ; y_l) tE2>E? has  deg,(y) = (x +x3) + Alyf +y3)
Y2 V2

Idea If N > |A| then m = N — |A|(y? + y2) > O often enough that we find
m = x2 + x2 as sum of squares

Heuristic If N > |A|, we can find endomorphism of E? with polarised degree N
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let deg,(y) = NN, with N; coprime
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let deg,(y) = NN, with N; coprime
Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,

rueg.re/siam25

6/6


https://rueg.re/siam25

Constructing isogenies of prescribed degree
In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let deg,(y) = NN, with N; coprime
Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny
x
V1 V2

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € EZ[N]}
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let deg,(y) = NN, with N; coprime

Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny

—Vi Vo

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € EZ[N]}
Idea (Specific to Frobenius orientation)
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Constructing isogenies of prescribed degree
In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let deg,(y) = NN, with N; coprime
Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny
x
V1 V2

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € E2[N]}
Idea (Specific to Frobenius orientation)

Ouru ~+A= JP

Set N = u(2%/2 — u) > |A| = p to get 4-dimensional isogeny I of degree 2¢/2
Obtain u-isogeny u; : E? — A, as component of I
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