

PEGASIS Practical Efficient Class Group Action using 4-dimensional isogenies

Joint with Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert, Frederik Vercauteren and Benjamin Wesolowski

https://eprint.iacr.org/2025/401

Ryan Rueger
IBM Research Zurich & Technical University of Munich

Cryptographic Group Action

Cryptographic Group Action

 \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)

Cryptographic Group Action

 \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)

→ Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Cryptographic Group Action

 \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)

→ Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Quantum Resistant

Cryptographic Group Action

 \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)

→ Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Quantum Resistant

Asymptotically and Practically Efficient

Cryptographic Group Action

 \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)

→ Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Quantum Resistant

Asymptotically and Practically Efficient

Arises from Isogeny Class Group Action between Supersingular Elliptic Curves

Cryptographic Group Action

- \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)
- → Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Quantum Resistant

Asymptotically and Practically Efficient

Arises from Isogeny Class Group Action between Supersingular Elliptic Curves

Unrestricted instantiation

 \rightsquigarrow Can compute gx efficiently for $all\ g$ in G and x in X

Cryptographic Group Action

- \rightsquigarrow G \curvearrowright X: hard to recover g from (x, gx)
- → Can build many primitives: NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

Quantum Resistant

Asymptotically and Practically Efficient

Arises from Isogeny Class Group Action between Supersingular Elliptic Curves

Unrestricted instantiation

 \rightsquigarrow Can compute gx efficiently for $all\ g$ in G and x in X

Before PEGASIS

Pick two {Asymptotically efficient, Practically efficient, Unrestricted}

Restricted action $G \curvearrowright X$

Restricted action $G \curvearrowright X$

Can only compute action gx efficiently for specific set of generators g_1, \dots, g_n

Restricted action $G \curvearrowright X$

Can only compute action gx efficiently for specific set of generators g_1, \dots, g_n

Evaluate $g = \prod g_i^{e_i}$ action by e_i -successive g_i -actions \rightsquigarrow costs $O(\sum e_i)$

Restricted action $G \curvearrowright X$

Can only compute action gx efficiently for specific set of generators g_1, \dots, g_n

Evaluate $g = \prod g_i^{e_i}$ action by e_i -successive g_i -actions \rightsquigarrow costs $O(\sum e_i)$

Problem (Efficiency)

Successive action becomes more expensive

Restricted action $G \sim X$

Can only compute action gx efficiently for specific set of generators g_1, \dots, g_n

Evaluate $g = \prod g_i^{e_i}$ action by e_i -successive g_i -actions \rightsquigarrow costs $O(\sum e_i)$

Problem (Efficiency)

Successive action becomes more expensive

Problem (Security)

Building complex primitives is difficult

rueg.re/scd25 2/4

Results

		Lang.	128	256	375	512	1024
Restricted	CSIDH*	С	40ms				
	SQALE*	С					5.75s**
	dCTIDH*	С				350ms**	
Unrestricted	SCALLOP*	C++	35s	750s			
	SCALLOP-HD*	Sage	88s	1140s			
	PEARL-SCALLOP*	C++	30s	58s	710s		
	KLaPoTi	Sage	207s				
		Rust	1.95s				
	PEGASIS	Sage	1.53s	4.21s	10.5s	21.3s	121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.

The Isogeny Class Group action

$$X = Ell_{SS}(\mathcal{O}), G = Cl(\mathcal{O})$$

The Isogeny Class Group action

$$X = Ell_{SS}(\mathcal{O}), G = Cl(\mathcal{O})$$

Action of $g = \prod g_i^{e_i}$ on E corresponds to computing an isogeny $E \to E_g$

The Isogeny Class Group action

 $X = \mathrm{Ell}_{\mathrm{SS}}(\mathcal{O}), G = \mathrm{Cl}(\mathcal{O})$ Action of $g = \prod g_i^{e_i}$ on E corresponds to computing an isogeny $E \to E_g$ \leadsto Cost in dimension 1 is $O(\sum e_i)$

The Isogeny Class Group action

$$X = \mathrm{Ell}_{\mathrm{SS}}(\mathcal{O}), G = \mathrm{Cl}(\mathcal{O})$$

Action of $g = \prod g_i^{e_i}$ on E corresponds to computing an isogeny $E \to E_g$
 \rightsquigarrow Cost in dimension 1 is $O(\sum e_i)$

Idea

Given $g = \prod g_i^{e_i}$, find equivalent element $h = \prod g_i^{f_i}$ $(\forall E \in Ell_{SS}(\mathcal{O}) : hE = gE)$

The Isogeny Class Group action

$$X = \mathrm{Ell}_{\mathrm{SS}}(\mathcal{O}), G = \mathrm{Cl}(\mathcal{O})$$

Action of $g = \prod g_i^{e_i}$ on E corresponds to computing an isogeny $E \to E_g$
 \rightsquigarrow Cost in dimension 1 is $O(\sum e_i)$

Idea

Given $g = \prod g_i^{e_i}$, find equivalent element $h = \prod g_i^{f_i}$ $(\forall E \in Ell_{SS}(\mathcal{O}) : hE = gE)$ \Rightarrow 2-dimensional isogeny $E \times E \rightarrow E_g \times E_{h^{-1}}$ is easy!

rueg.re/scd25 4/4

The Isogeny Class Group action

$$X = \mathrm{Ell}_{\mathrm{SS}}(\mathcal{O}), G = \mathrm{Cl}(\mathcal{O})$$

Action of $g = \prod g_i^{e_i}$ on E corresponds to computing an isogeny $E \to E_g$
 \rightsquigarrow Cost in dimension 1 is $O(\sum e_i)$

Idea

Given
$$g = \prod g_i^{e_i}$$
, find equivalent element $h = \prod g_i^{f_i}$ $(\forall E \in Ell_{SS}(\mathcal{O}) : hE = gE)$
 \Rightarrow 2-dimensional isogeny $E \times E \rightarrow E_g \times E_{h^{-1}}$ is easy!

Slogan

"Things become easier in higher dimensions"

rueg.re/scd25 4/