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Abstract. In this paper, we present the first practical algorithm to
compute an effective group action of the class group of any imaginary
quadratic order O on a set of supersingular elliptic curves primitively
oriented by O. Effective means that we can act with any element of the
class group directly, and are not restricted to acting by products of ideals
of small norm, as for instance in CSIDH. Such restricted effective group
actions often hamper cryptographic constructions, e.g. in signature or
MPC protocols.

Our algorithm is a refinement of the Clapoti approach by Page and
Robert, and uses 4-dimensional isogenies. As such, it runs in polyno-
mial time, does not require the computation of the structure of the class
group, nor expensive lattice reductions, and our techniques allow it to
be instantiated with the orientation given by the Frobenius endomor-
phism. This makes the algorithm practical even at security levels as high
as CSIDH-4096. Our implementation in SageMath takes 1.5s to com-
pute a group action at the CSIDH-512 security level, 21s at CSIDH-2048
level and around 2 minutes at the CSIDH-4096 level. This marks the
first instantiation of an effective cryptographic group action at such high
security levels. For comparison, the recent KLaPoTi approach requires
around 200s at the CSIDH-512 level in SageMath and 2s in Rust.

1 Introduction

The simplicity and flexibility of the Diffie-Hellman key-agreement protocol [26]
has made it ideally suited to create more advanced protocols, such as public-
key encryption [29], digital signatures [62], password-authenticated key exchange
[36], threshold encryption [25], threshold signatures [35, 34], updatable encryp-
tion [10] and many more. These protocols are all based on the computational
efficiency and commutativity of group exponentiation, combined with the com-
putational hardness of the discrete logarithm problem.



Due to Shor’s algorithm [63], the discrete logarithm problem is not quantum
hard. To construct a post-quantum analogue of the Diffie-Hellman protocol,
we need to remove the underlying group structure. One way to achieve this is
to use a commutative group action instead. The vectorisation and parallelisa-
tion problems, which are analogues of the discrete-logarithm and computational
Diffie-Hellman problems respectively, are assumed to be (superpolynomially, but
sub-exponentially [39]) hard, even for quantum computers. Furthermore, both
problems are equivalently hard for quantum computers [32, 42, 33]. Using group
actions, it is possible to construct post-quantum analogues of the advanced pro-
tocols given above: public-key encryption [43], digital signatures [7], password-
authenticated key-exchange [1], threshold encryption and signatures [24] and
updatable encryption [40].

A group action is said to be effective (EGA) if, amongst other conditions, the
action can be computed in polynomial time [2]. That is, if G acts on X, we have
a polynomial-time algorithm that computes gz for any g in G and z in X. If we
only have a polynomial-time algorithm that can compute g;x for {g1,...,9n}, a
set of (polynomially many) generators of G, the action is said to be a restricted
effective group action (REGA).

The most prominent instantiation of a REGA is given by the action of the
class group of an imaginary quadratic order on a certain set of oriented elliptic
curves, with the CSIDH protocol [13] (or its variant CSURF [12]) being the most
efficient. In CSIDH, the orientation is given by the Frobenius endomorphism, and
the set of oriented curves simply consists of the supersingular curves defined over
F,, up to Fj,-isomorphism. Since we can only efficiently evaluate the action of
ideals of smooth norm, CSIDH is indeed a REGA and not an EGA. This often
results in difficulties in constructing post-quantum variants of protocols based
on Diffie-Hellman: many of the previously mentioned examples really require an
EGA, while other examples, such as the signature scheme SeaSign [22], resort to
some form of rejection sampling to not leak information about the secret (as a
workaround for being a REGA).

A three step approach to turn a REGA into an EGA was given by the sig-
nature scheme CSI-FiSh [7]: the first step computes the structure of the class
group (which can be done in quantum polynomial time, but classically takes
subexponential time), the second step computes a (very) short basis of the rela-
tion lattice (which takes exponential time, even quantumly) and the third step
expresses any element as a product of the generators with small exponents, us-
ing the short basis. Step 1 has been done in practice for CSIDH-512, but further
research [6, 9, 51] concludes that using a 512 bit prime for CSIDH does not
achieve NIST level 1 security, with the latter two sources claiming that primes
of more than 2000 bits are required. Since the computation of the class group
is infeasible for such large primes, the primitive SCALLOP [21] and improve-
ments [14, 3] avoided such computation by using a (large prime conductor)
suborder of an order with small discriminant, so that the class group structure
comes for free. This approach however does not fundamentally solve steps 2 and
3 (see https://yx7.cc/blah/2023-04-14.html for an informal, but detailed
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discussion of this issue), and the highest level achieved in [3] is equivalent to
CSIDH-1536, for which a single group action takes almost 12 minutes using a
C++ implementation. This approach is therefore completely hopeless to instan-
tiate practical effective group actions at higher security levels (even using a
quantum computer).

Our contributions. We describe a practical algorithm to compute the group
action of any element in the class group of an imaginary quadratic order O on a
set of supersingular elliptic curves over Fp primitively oriented by O. Our algo-
rithm works for all orders of discriminant Ay all the way up to |[Ap| ~ p and in
particular, applies in the CSIDH/CSURF setting, where the orientation is given
by Frobenius, and we have Ap = —p or Ap = —4p. As such, we obtain the first
EGA at security levels equivalent to CSIDH-2048 and CSIDH-4096. We imple-
ment the algorithm in SageMath, and show that it achieves a highly practical
runtime, which scales well to higher security levels. Not only does our algorithm
allow us to easily instantiate security levels far beyond what previous EGA
instantiations were able to; the timings of our proof-of-concept SageMath imple-
mentation also outperform all other EGA instantiations (even compared to their
highly optimized C++/Rust implementations) at corresponding security levels.
Our implementation is publicly available at https://github.com/pegasis4d.

Technical overview. Our work is based on the Clapoti framework [49], and
proceeds by embedding the isogeny we wish to evaluate in an isogeny in dimen-
sion 4. In order to evaluate the action given by the ideal a C O on an elliptic
curve F using only one 4-dimensional 2¢-isogeny, the Clapoti framework requires
finding two other integral ideals b, ¢ equivalent to a such that

ulN(b) +vN(c) = 2°, (1)

with the restriction that u,v are integers that can be written as the sum of two
squares (in particular, they must be easy to factorise), and where 2° < p (or
more accurately, the full torsion group E[2°] should be defined over F 2 for a
small k).

Several issues arise when trying to solve the above equation for |Ap| = p:
even without the restriction on u and v being sums of squares, sometimes the
equation simply has no solution. Indeed, since the smallest ideals equivalent to
a are already expected to have norm around ,/p, and a solution is guaranteed
to exist only when N(b)N(c) < 2° this contradicts the requirement 2°¢ < p.
As such, imposing the extra condition for both u and v to be sums of squares
further lowers the probability of finding a solution.

The main insight is that we can derive a related equation which is much
easier to solve by exploiting the fact we can always efficiently compute small
degree isogenies. We use this insight in two ways: first, we write b = byb, and
¢ = cx¢e where b, and ¢, are ideals of smooth norm and compute the isogenies
vp, : B — Ep and ¢, : E — Es, simply using Elkies’ algorithm [30] or Vélu’s
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algorithm [64]. We can then apply the Clapoti framework to Eq x Ej instead of
FE x E, resulting in the equation

ulN (b)) + vN(ck) = 2°,

where now the product N (by)N(c) is typically much smaller than 2¢ since we
have removed the norms of the ideals b, and c,.

Second, we use the same insight to relax the conditions on u and v: instead
of requiring that each can be written as a sum of squares, we again allow to take
out smooth factors g, and g, such that u = g, (22 +y2?) and v = g, (22 +y2). Note
that integers containing prime factors (to an odd power) which are 3 mod 4 can
never be written as a sum of squares, so allowing factors like 3,7,11,19,... to
be taken out of v and v drastically increases the probability that both u/g, and
v/g, are sums of squares. Applying the above, allows us to solve the (relaxed)
norm equation efficiently, even at the highest security levels.

With u and v of this form, we are able to efficiently construct a 2-dimensional
u-isogeny @, : E? — E? and a 2-dimensional v-isogeny &, : E2 — E2. We then
compute a 4-dimensional 2%-isogeny F : E2 x E2 — E2 x E'? that “embeds” &,
Dy, vp, * B1 = Eq and ¢, : By — E,, where E, := a- E. Using level-2 theta
coordinates as in [18], the computation of F' is relatively fast. We finally extract
the resulting curve F, from the codomain of F. For very high security levels,
we remark that it is helpful to relax the conditions on u, v and allow them to be
arbitrary positive integers, at the cost of using more dimension-4 isogenies (see
Sections 4.2 and 6.4).

Comparison with related work. We briefly compare our algorithm with
2 related works: the original Clapoti framework [49] and the recent KLaPoTi
algorithm [50] that relies on KLPT.

Clapoti: As described above our work is based on the Clapoti framework [49],
which presents the first polynomial time algorithm to act with a random ideal
a C O by finding two integral ideals b, ¢ equivalent to a such that

ulN(b) +vN(c) =M. (2)

For a provably polynomial time algorithm, M has to be chosen powersmooth,
but in order to achieve a practical algorithm, one really is limited to M = 2¢
where the 2°-torsion is easily accessible, in particular, 2¢ < p. However, the
expected number of solutions is 2°/N(b)N(c) where N (b), N(c) are roughly /p
and thus if p +1 = f2¢ even for small f, this equation simply will not have
a solution. To illustrate this: for the 4000-bit parameter set, directly applying
Clapoti will fail in 97% of the cases when M = 2¢ < p, and this is without the
restriction on u and v being sums of squares. If one adds this restriction on u
and v, the probability to find a solution is close to 0 since the probability that
a pair (u,v) each of size /p is a sum of squares is proportional to 1/log(p).
Furthermore, note that it is impossible to test all pairs (u,v) since this would
involve factorisation, even further lowering the probability by another 2 to 3



PEGASIS: Practical Effective Class Group Action 5

orders of magnitude depending on the size of p. In conclusion: running Clapoti
with M = 2° < p will almost always fail, and thus is not a practically efficient
algorithm.

KLaPoti: A recent paper by Panny, Petit and Stopar [50] has also instantiated a
primitive KLaPoTi based on Clapoti. KLaPoTi differs from PEGASIS in several
aspects. The main ones are the way Equation (1) is solved, the dimension of
the isogeny used in the evaluation of the group action and the size of the base
prime p. KLaPoTi relies on the KLPT algorithm [38] to solve Equation (1), which
now requires u, v to be perfect squares. The fact that v and v are perfect squares
allows to perform the group action computation using dimension-2 isogenies only.
Nevertheless, the relatively large size of the solution obtained by this KLPT
approach requires |A[]?> < 2¢ where A is the discriminant of the order O. This
implies that KLaPoTi uses a base prime p whose bitsize is 3 times larger than the
one used in CSIDH and PEGASIS, and uses an order O of discriminant A with
|A|? < 2¢ < p. This highly affects the performance and the key sizes in KLaPoTi.
Even though PEGASIS performs the group action using 4-dimensional isogenies,
the fact that |A| ~ 2° ~ p in PEGASIS enables a group action computation
which is more efficient. For example, to achieve similar security to CSIDH-512,
KLaPoTi uses a prime p of 1536 bits and a single group action computation
takes approximately 3 minutes [50, Section 7.1] in SageMath, while PEGASIS
uses a prime of about 512 bits and a single group action computation takes
approximately 1.5 seconds.

Organisation of paper. The rest of the paper is organized as follows. In Sec-
tion 2 we recall the necessary background material. In Section 3 we describe our
whole algorithm for general orientations. In Section 4, we detail an important
subroutine, namely how to compute an isogeny of prescribed degree in dimen-
sion 2, before we in Section 5 specialise our algorithm for the CSIDH orientation.
Finally, in Section 6 we detail some implementation choices before we present
our timings.
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2 Preliminaries

For a general introduction to isogenies, especially in the context of cryptography,
we refer the reader to [31].



2.1 Isogeny class-group action on oriented curves

Classic results [65, Th. 4.5] tell us that the class-group CI(O) of an imaginary
quadratic order O acts freely and transitively on the set Ord,(O) of ordinary
elliptic curves E/F, with endomorphism ring End(E) = O. In [15], generalising
the work of [13, 12], Colo and Kohel introduced the framework for a similar
action, in which Cl(O) acts on a set of supersingular elliptic curves E which
contain O as a subring of End(E). We briefly recount this general construction,
together with results from [48].

Let O = Z[a] be an imaginary quadratic order and E/F,» an elliptic curve.
We call an injective morphism of rings ¢: O — End(F) an O-orientation and
say it is primitive if (o) = w is a primitive element of End(E) viewed as a
lattice, i.e. w does not factor through a (non-trivial) scalar multiplication. We
call the pair (F,:) a (primitively) O-oriented elliptic curve.

Let (E,t) be primitively O-oriented and a an integral invertible ideal of O
with norm coprime to p. Let ¢,: E — E, be the isogeny with kernel

Ela] = () ker(«(o))

oeca

and degree N(a). Now consider the map O — End(Eq,) : v = @at(7)@a. It
is an injective morphism of additive groups, but sends 1 — [deg(¢q)] and
50 is not a morphism of rings. We fix this by first noting that @qt(v)p, al-
ways factors through [deg(p,)] and then defining (pq)«(t) as the map given
by (©a)«(t)(7) = ©at(7)Pa/[deg(¢q)] to obtain a morphism of rings and thus a
well-defined O-orientation. Indeed, by diagram-chasing one verifies that ker(yq)
is invariant under w = (), demonstrating that p,i(v)@q (F[deg(vq)]) = {0} for
all v in Z[a], and that ©qt(7)@e factors through [deg(¢q)]. In fact, (vq)«(¢) is a
primitive orientation [48, Prop. 3.5].

We say that the isogenies ¢q: (E,t) = (Eq, (pa)«(t)) are O-oriented. Like-
wise, an isomorphism ¢: E =% E’ is called an O-isomorphism (E,1) — (E',!)
if i = pu(t) := (v = @u(7)@). Using this terminology, we define SSp.(O) to be
the O-isomorphism classes of primitively O-oriented supersingular elliptic curves
defined over F,». This set is non-empty if and only if p is not split in K = O®zQ
and does not divide the conductor of O in Ok [48, Prop. 3.2].

We note that every class [a] in the class-group Cl(O) is represented by an
invertible integral ideal b with norm N(b) coprime to p [17, Cor. 7.17]. Moreover,
it is clear that principal ideals vO correspond to endomorphisms ¢ 0 = (7).
Now the map

Cl(O) x SS;'(0) — SS)H(0) [a], (B ) = a-(E, i) = (Eq, (©a)«(t))

is well-defined; and when SSP*(O) is non-empty, the action is free with at most
two orbits [48, Prop. 3.3, Th. 3.4]. Restricting to one of these orbits, we obtain
a free and transitive group action.

The vectorisation problem of this action - given (E,¢), (E’,¢') compute [a]
such that a-(E, 1) = (E’, ') - is thought to be quantum resistant. This property
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led to several cryptographic constructions based on ideal class group actions [13,
15, 21, 14] which define (restricted) effective group actions, as mentioned in Sec-
tion 1. The first one to be introduced was CSIDH (Commutative Supersingular
Isogeny Diffie-Hellman)® [13] where O = Z[,/=p] and the orientation induces an
isomorphism O = Endg, (O), mapping \/—p to the Frobenius endomorphism of
(z,y) = (2P,yP) for all E € SSP"(O). Even though these schemes are thought
to be quantum resistant, the best known quantum attack against the underly-
ing vectorisation problem is a subexponential algorithm due to Kuperberg [39].
For that reason, there is an uncertainty on the parameters required to ensure a
sufficient security level for CSIDH (and other class group action schemes). As
mentioned in Section 1, conservative sources [6, 9, 51] estimate that a 2000 bit
prime p is required to ensure a NIST-1 security level for CSIDH.

2.2 Polarised isogenies between abelian varieties

Every abelian variety A has a dual A of the same dimension and every isogeny
¢: A— Bhasa dual $: B — A of the same degree. If there exists a special kind
of isogeny A a: A — A called a polarisation, we say (A, \4) is a polarised abelian
variety (PAV). When A4 is an isomorphism, we say it is a principal polarisation
and call A a principally polarised abelian variety (PPAV). Elliptic curves are
exactly the 1-dimensional PPAVs; they are canonically principally polarised.

Definition 2.1 (Polarised Isogenies). Let ¢: (A, 4) — (B, AB) be an isogeny
between PAVs. If there exists an integer d such that App = [d|Aa, we say that ¢

is (Aa, Ap)-polarised with polarised degree deg,(p) = d. When A, B are PPAVs

we define the polarised dual of ¢ to be @ = A\ @Ap: (B,Ap) — (A,\4). Then

¢ 1s (A4, Ap)-polarised with degree d if g = [d] in End(A).

(Aa, Apg)-polarised isogenies of polarised degree d are characterised by an
isotropy condition of their kernel.

Lemma 2.1. Let ¢: (A, a) — (B, Ag) be a (Aa, Ap)-polarised isogeny with po-
larised degree d such that ptd and let g := dim(A). Then ker(p) is a subgroup of
cardinality d9 of A[d], isotropic with respect to the Weil pairing el gssociated
to the polarisation [d)As : A — A (as defined in [41, p. 135)).

Conversely, if A is a PPAV of dimension g and ¢: A — B has kernel
ker(p) C A[d] of cardinality d? and isotropic for el | then there exists a unique
principal polarisation A on B such that ¢ : A — B is a (Aa, Ap)-polarised
isogeny with polarised degree d.

Proof. Suppose that ¢ is a (A4, Ap)-polarised isogeny with polarised degree d.
Let z,y € ker(p) and ¢y € B such that y = ¢(y’) (which exists by surjectivity

8 Note that CSIDH is based on the CRS protocol [16, 60], which uses the full en-
domorphism ring of an ordinary curve instead of an orientation of a supersingular
curve
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of & and belongs to B[d] since ¢ o @ = [d]). Then, by the definition of el?*4 and
the usual properties of the Weil pairing [41, Lemma 16.2],

el (z,y) = ea(z, Aa(y)) = ea(z, A4 0 G(y')) = ea(x, @ o Ap(Y))
= ea(p(z),A\p(y")) =1,

since ¢(z) = 0. This proves that ker(i) is isotropic.

Conversely, suppose that ker(¢) C A[d] of cardinality d? and isotropic for
el 4 Then [41, Proposition 16.8] ensures the existence of a polarisation Ag on
B such that @ o Ag o p = [d]A4. Since deg(p) = deg(p) = |ker(p)| = d9 and
deg([d]) = d?9, it follows that deg(Ag) = deg(A4) = 1 by multiplicativity of the
degrees so Ap is a principal polarisation. This completes the proof. O

For brevity, we will drop mention of the polarisations when they are clear
from context, and say d-isogeny to mean an isogeny with polarised degree d. In
particular, it is implicit that the corresponding polarisation to a PAV denoted
A is A 4. Between elliptic curves, the principal polarisation being canonical, the
dual @ and polarised dual @ of an isogeny can be identified and will both be
denoted by @; and the notions of degree and polarised degree are also the same.

We recall a standard result about factoring isogenies between PPAVs, which
we will need to recall the Clapoti construction in the more general context of
[49, Remark 2.10].

Lemma 2.2 (Factoring Isogenies between PPAVSs). Let A, B be PPAVs
defined over a field k and ¢: A — B be a d-isogeny between them. For every
pair of positive coprime integers dy,ds each being coprime to char(k) satisfying
dide = d, there exists a PPAV C, a dy-isogeny ¢1: A — C and a da-isogeny
p2: C — B, each uniquely defined up to isomorphism, such that ¢ = pg 0 1.

Proof. Since d; and dy are coprime, we have ker(p) = ker(¢)[d1] @ ker(¢)[d2]
with | ker(p)[d;]| = d? for i € {1,2}. Consider the isogeny ¢1: A — C of kernel
ker(p)[d1] and ¢3: C — B’ the isogeny of kernel ¢;(ker(¢)). Then by con-
struction ker(yg 0 ¢1) = ker(p) so @2 0 91 = ¢ up to postcomposition with an
isomorphism B =% B’ by [45, Theorem 4, p. 74].

Since ¢ is a d-isogeny, Lemma 2.1 ensures that ker(p) C A[d] is isotropic
for el so ker(py) C Aldy] is isotropic for el by the usual properties
of the Weil pairing [41, Lemma 16.1] and of cardinality df, as we saw. Using
Lemma 2.1 again, we obtain a principal polarisation A\¢ on C such that ¢ is a
(A4, Ac)-polarised isogeny of polarised degree d;.

To conclude, we verify that o9 is a (A¢, Ag)-polarised isogeny of polarised de-
gree dy. Substituting into App = [d1da]A 4, we obtain 91 P2 Ao = [dadi|Aa =
[d2]@1 Ao w1 and conclude that PaApps = [d2]Ac. Indeed, isogenies are surjective
so fh = gh implies f = g and by forming the dual (twice) we see that hf = hg
also implies f = ¢g. Note that this last argument also proves the uniqueness of
w1 and 9. This completes the proof.

O



PEGASIS: Practical Effective Class Group Action 9

2.3 Kani’s lemma and embedding isogenies into higher degree

If (iji)ij is a matrix of polarised isogenies ¢;;: A; — B; between PPAVs, then
its polarised dual is given by (¢;;),;. Whether or not a 2 x 2 matrix of polarised
isogenies is a polarised isogeny is the content of Kani’s lemma.

Lemma 2.3 (Kani, [54, Lemma 2.1]). Let Ay, A, By, By be PPAVs defined
over k and let @;;: A; — Bj be polarised d;;-isogenies. The map

Y11 P21
b= : A1 x Ay - B; x B
<<p12 @22> 1 2 1 2

18 a polarised isogeny if and only if di1 = dao,d12 = doy1 and the corresponding
square Se

Ay BN By

*<P12l l@i

By —— Ay
P22

commutes. In such cases, degp@) = dy1 + di2 and we call & the Kani-map
corresponding to the Kani-square S¢. Further, if di1 = dao is coprime to dis =
da1, we call the Kani-square a (dy1,d12)-isogeny diamond. Finally, when dy; is
coprime to di2 and d = dy1 + di2 s coprime to the characteristic of k, then

ker(®) = {([dui]z, parpn1(2)) | = € Asld]}.

If @ can be efliciently evaluated, then so can ¢;;, and @ is said to embed ;.
In other words, @ is an efficient representation of the ¢;; in the sense of the
following definition.

Definition 2.2. Let o/ be an algorithm. Given a d-isogeny ¢ : A — B between
PPAVs of dimension g defined over IFy, an efficient representation of ¢ with
respect to &/ is some data Dy, € {0,1}* of polynomial size in g, log(d) and
log(q) such that for all P € A(F), < with input (D,, P) returns o(P) in
polynomial time in g, log(d), k and log(q).

3 Our algorithmic approach

We now describe our algorithm for computing the class group action by a general
orientation.

3.1 Applying Kani’s lemma in dimension 4

The factorisation lemma (Lemma 2.2) gives us a strategy to embed arbitrary
isogenies into higher dimension [49, Remark 2.10]. If ¢: A — B, ¢v: A — C
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are isogenies between PPAVs with coprime polarised degrees, we can form a
Kani-diamond by factoring the composition %@ as ')’ whereby ¢': B — D
and ¢": C'— D have polarised degrees deg,,(¢') = deg,(¢), deg,(¢) = deg,(¢').
The kernel of the resulting Kani-map can be computed so long as 1¢ is known
on Bldeg, (o) + deg, (¥)].

When computing the class-group action of [a] on a primitively oriented elliptic
curve (E, ), the isogenies ¢, are taken to be @y, p.: E, — E where b, ¢ are
representatives of [a]. The composition P pp = e is an endomorphism on FE
dictated by ¢ and so the kernel of the resulting 2-dimensional Kani-map can be
computed so long as the N(b)+N(c) torsion is accessible. For practically efficient
computation (using [20] for instance), we must find ideals b, ¢ representing [a]
such that N(b) + N(c) = 2¢, where 272 | p+ 1 in order to work over F,2 (the
reason we need 272 to divide p + 1 is due to technicalities when using level-2
theta coordinates to compute higher-dimensional isogenies). However, finding
ideals b, ¢ satisfying this norm equation is not easy in practice and can only be
done with standard techniques when p is much bigger than |disc(O)| (which is
not suitable for CSIDH/CSURF, where | disc(O)| = p or 4p).

Goal: solve the norm equation:

uN(b) + vN(c) = 2¢ (3)

with 22 | p+1, [a] = [b] = [¢], u,v > 0, ged(uN(b),vN(c)) = 1, and such that we
can build efficiently computable dimension-d isogenies ®,: E* — A,, ®,: E* —
A, of polarised degrees u,v.

Indeed, the factoring lemma (Lemma 2.2) ensures that we have a (uN(b), vN(c))-
isogeny diamond

A —>gzj A,

&2

4 Ed

|

A, — pid — E¢
o, P

where @y, := diag(pp), P, = diag(p.): B — EY, @ is an uN(b)-isogeny and ¥ is
a vN(c)-isogeny. Hence, by Kani’s Lemma 2.3, we can embed the compositions
&y 0 iﬁu and @, o 5; into a 2d-dimensional 2¢-isogeny F' : A, x A, — Eg x A.
Except when u and v are perfect squares as in [50] (which does not make
the norm equation much easier to solve), we cannot expect @, and &, to be
one-dimensional. Using higher dimensions d > 2 appears necessary because it is
difficult to construct (efficient representations of) outgoing 1-dimensional isoge-
nies &,,, P, of large given degree u,v on E without knowing the endomorphism
ring End(E): the only tools we have at our disposal to produce arbitrary-degree



PEGASIS: Practical Effective Class Group Action 11

isogenies all require higher dimensions. In fact, a variant of this problem (con-
struct a large prime degree isogeny on FE) is conjectured to be cryptographically
hard [4, Problem 2].

In any case, Zarhin’s trick [28, Th. 11.29, Eq. (4)] would allow us to efficiently
construct endomorphisms ®,,, $, of E* with the prescribed polarised degrees u, v.
However, we consider computing the corresponding 8-dimensional isogeny F' to
be too expensive. Instead, we will see in Section 4 how to find solutions when
d = 2. Consequently, we have to compute a 4-dimensional isogeny F', which can
be done efficiently with level-2 theta coordinates [18]. As mentioned earlier, the
algorithms to compute the 2¢-isogeny F require 2°+2-torsion points, so we need
2¢72|p + 1 instead of 2°[p + 1 to be able to work over F ..

Unfortunately, there do not always exist positive integer solutions u,v to
ulN(b) +vN(c) = 2¢. Indeed, the Frobenius coin problem tells us that we are only
guaranteed solutions when 2¢ > N(b)N(c) — N(b) — N(c); on the other hand,
when O = Z[/—p] (as in CSIDH), the smallest representative of any class [a]
in Cl(O) is expected to be of size roughly ,/p. So, recalling that 22 | p+ 1,
we see that we rarely have guaranteed solutions u,v. The solution we propose
to overcome this difficulty is to give some additional freedom on the choice of
ideals b, ¢ by factoring out their smooth part.

3.2 Factoring out easy steps first
We will now describe how to compute the action of [a] on (E,¢) in four dimen-

sions. Throughout this section, b, ¢ are primitive’ representatives of [a].

The idea. Suppose we can factor b = b.by, ¢ = cocx, so that the isogenies
o, : B — E1,p., : E — Ey are efficiently computable (e.g. smooth degree) and
so that we can find efficiently computable isogenies @,,: E? — A,,®,: E3 — A,
(e.g. integer-matrix endomorphisms) with polarised degrees u, v satisfying

uN(bg) + vN(cx) = 2°. (4)
Then we can consider the following (uN(b), vN(c))-isogeny diamond

Aa—2 a4,

9 i.e. neither b nor ¢ is contained in NO for any N > 1.
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where @7 is the 2-dimensional isogeny diag(¢r, ¢r) given by the action of I C O.
Then, Kani’s lemma yields a 4-dimensional isogeny

P (45 oF. ‘Pcké;@v) Ay x Ay B2 x A, )

with kernel
ker(F) = { ([uN(by) ]2, @, 8, o, By (2)) | @ € Au[2°]}

= { ([N (B0, o0z, Bu(x)) | @ € Auf2°]]
= {(IN@W)]Pu(v), uPeze, (1)) | v € EF[2}. (6)

Since b, ¢ both represent [a], tb = 0O is principal and we can evaluate gz, = (o).
Having computed ¢, and ¢p,, we can evaluate

N(be)N(ce)pero, = Pe.t(0)Po, - (7)

and compute ker(F) (more exactly points of 2¢T2-torsion generating ker(F) as
required in [18]). We refer to Section 5.2 for more details on the kernel compu-
tation in the case of CSIDH.

The algorithm. By construction, uN(by) + vN(cx) = 2° has at least as many
positive integer solutions u,v as uN(b) +vN(c) = 2¢. Indeed, every ideal appear-
ing as by can also be chosen as b (with b, = 1). More relevant, though, is that
the norms of the ideals by are smaller, and so we hope for more u, v solutions.

The ideals b, ¢, should be chosen so that the corresponding isogenies py_, .,
are easy to compute, e.g. of smooth degrees. More precisely, letting 8B be a set
of small primes, we permit b, ¢, to be a product of ideals lying above the primes
in 9. Note that since b,, ¢, are primitive, these primes will all be split in O.

With this requirement we now proceed as follows (we refer to Section 5.1 for
details).

1. Obtain a set S of short representatives of [a] (e.g. by Lagrange-reduction).

2. Factor each b in S as b = b.b; maximising the norm of b..

3. Select a pair of ideals b = b.by and ¢ = c.¢, from S with N(bg), N(cx)
coprime, prioritizing those with the smallest N(by), N(cx).

4. Enumerate the positive integer solutions u, v of uN(by) + vN(c) = 2¢.

5. Return a solution u, v if it allows for the construction of @,,®,; else choose
a different b, ¢ pair.

We briefly remark that this technique of splitting the isogeny computa-
tion into an easy l-dimensional, followed by potentially expensive (d > 2)-
dimensional computation also allows us to compute more isogenies &,, of pre-
scribed polarised degree u. Indeed, the naive approach of constructing @,, as a

2 x 2 integer-matrix
Ty —Yu
8
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only permits u = 22 + y2 to be a sum of two squares. Composing ®,, as the
diagonal of some one-dimensional isogeny of sufficiently smooth degree g, (e.g.
B-smooth), and then a matrix as above allows for polarised degrees u = g, (22 +
y2) (see Section 4.1).

3.3 Finding the codomain orientation

Once we have computed the 4-dimensional isogeny F : A, x A, — E? x A and
extracted E, from its codomain (following the approach presented in Appendix B
in the case of CSIDH), we still have to compute the orientation ¢q := (¢q)«(¢) on
FE,. In the case of CSIDH, this orientation is naturally given by the Frobenius
endomorphism and does not need to be computed. However, this orientation is
not that easy to determine in general.

Given a generator a € O of O (i.e. O = Z[a]), we only have to com-
pute an efficient representation of tq(c), as defined in Definition 2.2. Assuming
| disc(0)| < 2%/ with 2f | p+ 1, we can always find a of norm bounded by 22/
and it suffices to evaluate tq(a) on a basis of E,[2f] to efficiently represent this
endomorphism, e.g. using the higher dimensional interpolation algorithms from
[56, Theorem 3.7 & Section 6.4]. Furthermore, if e+2 < f, then knowing ¢(«) on
the 2/-torsion is sufficient to compute the 2¢T2-torsion lying above ker(F) given
by Equation (6) so to compute the action of any ideal on E. The same holds for
E,: the knowledge of t4(a) on E4[27] is sufficient to propagate the ideal class
group action further.

Now we explain how we compute 14() on a basis of E,[2f]. Using the fact
that b = 0O, we obtain that

(@) = (pa)e(t) = @% o u(a)o Pa = ﬁ% o u(a) o B

Let (P, Q1) and (P,, Q,) be two bases of F;[2f] and E,[27] respectively. Then
by Eq. (5), we have F(®,(P1,0),0) = ([u]gs,(P1),0,%) so we can evaluate
[u] s, (P1), hence ¢, (Py) by multiplying by an inverse of « mod 2/. We com-
pute @p, (Q1) similarly. Now, with (easy) discrete logarithm computations in
E,[2f], we may find a, b, ¢, d € Z such that oy, (Py) = [a] P,+[b]Qq and pp, (Q1) =
[c] Py + [d]Qq. Then, a simple matrix inversion yields

Poy (Pa) = [ON(bp)]([d] Py — [b]Q1) and o, (Qa) = [IN(bk)](=[c] P1 + [a]Q1),

with § an inverse of ad—bc mod 2/ (which does exist because N(by,) = deg(¢s, )
is odd, so ¢y, maps a 2/ -torsion basis to a 2/-torsion basis). So we have computed
(@b, (Pa), Po, (Qq)). Similarly, knowing ¢p,, we can compute the action of its
dual @, on the 2/-torsion provided that N(b.) is odd. We can impose this
condition by removing 2 from the set of allowed primes 8. Hence, we can evaluate
Db, © Db, = Pp on the basis (Py, Qq). We can then evaluate [N(b)]tq(a) = pp 0
1(@)oPp = pp, 0pp, oL(a)oPp, 0Pp, on (Py, Qq), using our knowledge of the action
of t(a) on the 2f-torsion, of ¢y, and of pp, via F. Since N(b) = N(b.)N(by) is
odd, we can invert it modulo 2/ and finally obtain (tq(a)(Ps),te()(Q4)), as
desired.
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4 Computing 2-dimensional isogenies of prescribed
polarised degree

In this section, we explain how to construct dimension 2 isogenies @,,®, of
prescribed polarised degree u, v, in order to solve Eq. (3) (or more precisely the
version in Eq. (4)).

We first treat an easy special case in Section 4.1. Then we explain in Sec-
tion 4.2 how to treat the case of u (or v) an arbitrary positive integer. The
drawback of the latter approach is that it involves computing a 4-dimensional
2¢-isogeny to build @,, in dimension 2.

4.1 The simplest case: when the polarised degree is B-good

Let us first assume that u and v are a sum of two squares. Then, given a curve
E and an integer v = 12 + 32, the endomorphism

= () 0

Yu Ty

on E? is such that MUZ\AJM = [u] is the multiplication by u on each component.
Hence M, induces an isogeny &, of polarised degree u as desired.

The probability that a random number u can be written as sum of two squares
is roughly 1/+/log(u) &~ 1/+/log(p)/2. Unfortunately, writing u as above requires
the factorisation of u. If we instead restrict u to be a prime, the probability goes
down to the order of 1/log(u). Since we need both u and v to be of this form,
we expect to find a valid pair after ~ log(p)? attempts. Looking at the size of
the primes we are working with, this approach becomes soon too expensive.

Instead, we can adopt the same strategy as in Section 3.2 to relax our con-
dition and aim for %B-good values u, v, for a given set of small primes.

Definition 4.1. Let B be a set of small primes. We say that u € N* is B-good
when u is of the form u = g, (z2 +y?2) where v, y, € N and g, € N* is a product
of primes in ‘B.

We may then write u = g, (22 + y2) and v = g,(z2 + y2), as above, where
g, and g, contain all the prime factors of u,v that are in 9. Recall that an
integer can be written as a sum of two squares if and only if, in its prime
power decomposition, there is no prime power ¢* such that k is odd and ¢ = 3
mod 4 [37, Ch. 2.15, Ex. 10]. We can then restrict g, and g, to primes that
are 3 mod 4. Notice that small prime numbers are more likely to appear in the
factorization of a number, and hence to cause failure of the sum of squares
condition. Heuristically, by taking out factors 3,7 and 11 we already increase
the probability of finding a sum of squares by a factor 3. If we choose O such
that these small primes are split in O, we can easily compute isogenies of degrees
gu and g, via the action of C1(O). In particular, in the case of CSIDH, these
isogenies are defined over F, so they are even more efficient to compute (see
Section 5.2).
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Given a pair u, v with no factors in 8, we are now left with the task of deter-
mining if both numbers can be expressed as sums of two squares. As mentioned
above, checking this condition requires factoring, which we cannot afford. We
instead perform trial division up to a fixed bound (10* for the 500 and 1000
parameters, and 10° for all the others), and then test what is left for primality.
We observe that this procedure reduces the chances of finding a good pair by 2
to 3 orders of magintude, as expected.

If the primality test succeeds, and all nonsquare factors are 1 mod 4, we can
apply Cornacchia’s algorithm to obtain x, and y, (respectively x,,y,). This
strategy is further discussed in Section 5.2 in the case of CSIDH.

Remark 4.1. Tt is possible to relax the 9B-good condition on (u,v) by allow-
ing u (resp. v) to take the form g,(az? + by2) (resp. g,(az? + by?)), where
Gus Gu, @, b € B, while ensuring that Kani’s lemma remains applicable as in Sec-
tion 3.1. Then, at the cost of computing 4 additional isogenies of degree a and b
with Elkies’ algorithm, we improve the likelihood that u and v are suitable for
computing isogenies of degree u and v in dimension 2. Experiments have shown
that allowing a and b to take values in {2,3,5,7} increases the probability of
success by approximately a factor of 3. Further details on this construction can
be found in Appendix C.

4.2 The general case

We now treat the case of a general u,v. Although it is easy to construct &, @,
in dimension 4, we saw in Section 3.1 that this would involve a dimension 8
isogeny for F'. In this section we explain how to construct them in dimension 2,
on E?. For that, we extend the approach of QFESTA [46] from dimension 1 to
dimension 2. A drawback is that our approach will be heuristic, although our
implementation shows that the heuristic works well in practice.

Let (E,t) be an O-oriented supersingular elliptic curve. Let A = disc(O) be
the discriminant of O. First, we show that we can heuristically build (efficient)
endomorphisms on E? of polarised degree N, as long as N > |A|. By construc-
tion, we can evaluate any endomorphism « € O, which gives us a 1-dimensional
isogeny ¢(7) of degree N(v). Since VA € O, the quadratic form v + N(7) re-
stricts on the suborder Z++/AZ of O to the quadratic form q(z,y) = 22+ |Aly>.

Now let 71,72 € O of norms nq,ns respectively, and consider the endomor-
phism

_ | ) (2) 2
V= (ﬂm) m)) € End(E").

Then, by [56, Lemma 3.2], its polarised dual is
~ () —(32)
7= (m) o) )
so that yoy = [n;+ns] in End(E?) and v is an (n; +ns)-isogeny. In particular, we

can build endomorphisms on E? of polarised degree N as long as N is represented
by the quadratic form q(z,y, z,t) = (2% + y2) + | A|(2? + t2).
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Heuristic 1. Let N > |A|. Then we can heuristically build an efficient endo-
morphism v € End(E?) of polarised degree N.

Justification. Since N > |A|, we can sample many small z,¢ such that (22 +
t2)|A] < N. Then if m = N —|A|(22 +#?) is a sum of two squares, we can find
by the discussion above. This situation can be efficiently detected whenever m
is a prime congruent to 1 mod 4, which heuristically happens with probability
~ 1/log(N). Since N > |A|, we can try with many different couples (z,¢) until
one succeeds. O

In practice, we can use a direct adaptation of the algorithm RepresentInteger
from [23] to find a solution of (2% + y?) + |A|(2? + %) = N.

Now by Lemma 2.2, if v is an efficiently represented endomorphism of E? of
polarised degree N = N1 Ny, with Ny, Ny coprime, then it decomposes uniquely
as 7y = ug 071 = i1 o y2 where the ~;, u; are isogenies of polarised degree N;.
Furthermore, by Kani’s lemma (Lemma 2.3) the 4-dimensional isogeny

I= ( n %) (10)
—72 M1
is of polarised degree N;+ Ny. The kernel of I' is given by Ker I = {(N, P,y P) |
P € E9[N7 + Na]}, so we can efficiently evaluate I" to obtain the 2-dimensional
isogeny 1 of polarised degree N; as long as the (N + Na)-torsion on E is
smooth and accessible (i.e. defined over a small extension of F,). Hence, an
efficient representation of v yields an efficient representation of v; in the sense
of Definition 2.2.
For simplicity, and because this matches our implementation choice, we will
now restrict to the case where we look for N1 + Ny = 2¢ a power of two.

Theorem 4.1. Assume that E[2°] C E(F,2) (with e > 3), that 23¢/271 > | A,
and that u < 2°~' is odd. Then, under Heuristic 1, we can efficiently represent
an isogeny P, of polarised degree u on E2.

Proof. First consider N = Ny Ny with N1 = u, Ny = 2° — u. Since u is assumed
to be odd, Nj is coprime to No. If N > |A|, we can use Heuristic 1 to build
an endomorphism in dimension 2 of polarised degree N, which we split via a
4-dimensional isogeny of polarised degree 2¢ to get @,,.

If this is not the case, then since 23¢/2 >> |A| by assumption, this means that
u is smaller than 2/, with f = [e/2]. We use a two step solution like in [47,
27]. First we let uy = u(2f — u), then 2/ — 1 < uy < 2272 < 271, Then we
let N = uy(2¢ — up). By our choice of f, N > 23¢/2-1 50 N > |A| and we can
use Heuristic 1 to build an endomorphism in dimension 2 of polarised degree IV,
which we split a first time (via a 4-dimensional isogeny of polarised degree 2°)
to get a 2-dimensional isogeny @,,, of polarised degree us, which we split again
(via a 4-dimensional isogeny of polarised degree 27) to get @,,. O

Remark 4.2.
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— To compute I' as defined in Eq. (10), we only need the m-torsion to be
smooth and accessible on E, where N3 + N | m?, see [58, § 6.3 and Ap-
pendix B]. This allows to relax the conditions on Theorem 4.1 to u < 22%¢
and 23¢71 > A,

— In practice, for our application from Section 3, we have u,v ~ M . Fur-
thermore, in the case of CSIDH, we have A = —p, and we select p such
that p = ¢2/ — 1 for a small cofactor c. In particular, we can take e = f in
Theorem 4.1, so that 2¢ = p. In that case we already have u(2°—u) > p, and
we do not need the two step solution, nor the more relaxed torsion condition
from the item above.

Combining Section 3 with Theorem 4.1, the resulting algorithm to compute
the action of a quadratic ideal a C O on an O-oriented elliptic curve is very
similar to the algorithm used in [5] to convert a quaternionic ideal to an isogeny
when the full endomorphism ring of E is known. We make up for the lack of
known endomorphisms on E to build isogenies of suitable fixed degree by going
up to dimension 2 and working on E?. This doubling of dimension propagates
to the rest of the algorithm, and we end up computing @,,®, and E, via an
isogeny of dimension 4, compared to dimension 2 in [5].

This change of dimension has important consequences for the fine-tuning of
the algorithm. Indeed, as we have seen in Section 4.1, @, (resp. @,) are much
easier to compute whenever u (resp. v) is a sum of two squares, or at least 2B-
good in the sense of Definition 4.1. In particular, in that case we do not need to
use a 4-dimensional isogeny to compute @,,.

A similar situation happened in [5]: if © was a sum of two squares we could
compute @, directly without going through a 2-dimensional isogeny. However,
experiments showed that spending more time on the norm equation to find u
a sum of two squares did not compensate having to do one less 2-dimensional
isogeny. The situation is different in our case, because a 4-dimensional 2¢-isogeny
is much slower than a 2-dimensional 2¢-isogeny (by a factor roughly x8). De-
pending on the size of our parameters, experiments show that the optimal choices
depend on the size of A.

— If A is of moderate size, we look for 98B-good w,v, and only compute one
4-dimensional isogeny for F,.

— If Ais of large size, we look for only one of u, v to be B-good, while we let the
other one be arbitrary. This time computing ¢4 requires two 4-dimensional
isogenies. For CSIDH, our experiments in Section 6.4 suggest this strategy
becomes faster than the previous one for p of 4000 bits. We remark that for
very large A, we expect that letting u, v be arbitrary and computing three
4-dimensional isogenies would be the optimal choice.

In the case of CSIDH (detailed in Sections 5 and 6), only the first choice is
implemented and the computation stays reasonably efficient even for our biggest
parameters (p of 4000 bits) as long as the allowed set of small split primes B is
well chosen. We refer to Section 6.4 for further discussion on the above trade-off.
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5 Our algorithm specialized to CSIDH

In this section, we apply our algorithm to the CSIDH setting, or more accurately,
the CSURF setting [12]; we fix a prime of the form p = ¢2/ — 1 where c is a small
odd integer and f > 1 so that p = 7 (mod 8), and work with curves oriented

by Z [HT M’}, where the orientation is given by sending /—p to the Frobenius

endomorphism. Not only does using the orientation given by Frobenius make
evaluating the orientation very fast, but by using the maximal order instead of
the typical CSIDH suborder Z[\/—p], we are able to execute our whole algorithm
over F,,, by choosing a particularily suitable basis of E[2°], and working with
z-only arithmetic. This is further detailed in Section 5.2 and Appendix D.

At a high level, the three-step process is summarized as in Algorithm 1. We
now describe the involved steps in more detail.

Algorithm 1 EVALUATEACTION(E, a)

Input: E a supersingular elliptic curve over F, defined on the surface.
Input: a CZ [@] an ideal.

Output: ax E

1: Compute [ C Z [@} an ideal of small norm. > Precomputation
2: Set ' := FE and @’ = a.

3: fail, be, by, ce, ¢k, u, v, e := FINDUV(a') > Step 1
4: if fail then > Rerandomize the ideal
5: Compute @’ = a'l
6.
7
8

Compute E' = [x E’ using Elkies algorithm.
run Line 3 on E’',a’.

: end if

9: KernelData := COMPUTEKERNELDATA(E’, be, by, ce, ¢k, u, v, €) > Step 2
10: Compute the 4-dimensional isogeny F', defined by KernelData. > Step 3
11: Extract E, from the codomain of F'. > See Appendix B.4.

12: return F,.

5.1 Step 1: the norm equation

In this section, we explain how to solve the norm equation (4) sketched in Sec-
tion 3.2. This subsection is summarized in Algorithm 2. As in Section 4.1, we
fix a set of small Elkies primes 9B, i.e. of primes that split in Q(,/—p). Notice
that we can always impose 2 € 8B. We begin by creating a list of primitive ideals
equivalent to a. More precisely, we obtain a list of equivalent ideals a() such that
al) = ag)a,(j) and N(ag)) is a product of primes in 8. We then want to find a
pair (4, ) such that for Ny = N(ag)) and Ny = N(ag)) (note that the smooth
part has been removed from the norm), we can find positive integers u, v solving
the equation

uNl + ’UN2 = 2°. (11)
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Since generically N1 Ny determines the minimal value for e such that the above
equation has a solution, we test pairs in order of increasing N1 No.

Given such a pair of norms N, Ny, we first check that they are coprime.
Indeed, if ged(N7, N3) is not a power of 2, Equation (11) has no solutions. Since
2 € % and we assume Np, Ny has no prime factors in B, this requirement simply
becomes ged (N7, Na) = 1.

If ged(Ny, No) = 1, we can find ug and vg such that ugNy + voNe = 1 via
the extended Euclidean algorithm, and consequently 2°ugNy + 2°v9Ny = 2°.
Note that one of ug and vy will be negative and that we parametrize all possible
solutions to the equation by writing

(2°ug + kN2) Ny + (2°0 — kN1 )Ny = 2°,

for some k € Z. This also allows to determine the minimal e for which Equa-
tion (11) has a solution by enumerating the set of k for which both v = 2°ug+kN>
and v = 2°vg — kN7 are positive.

Remark 5.1. The exponent e in Equation (11) determines the number of four-
dimensional 2-isogeny steps to be computed, so taking a lower exponent e will
be more efficient.

As remarked before and also observed in [5], solving Equation (11) directly for
a® and al), often fails since Ny, Ny are in O(y/p) and 2° < p, which makes the
original Clapoti approach unpractical in our case. Removing factors in B, makes
N; and Ns much smaller and hence greatly increases the probability of finding
solutions to Equation (11): the number of expected solutions grows roughly as
the product of all factors removed. This leads to the following tradeoff: the bigger
the set of primes B, the higher the probability of finding a solution, but the more
time is spent in the second step computing small degree isogenies. Furthermore,
even if the probability of finding a solution for a given choice of % is low, and
in particular, we fail to find a solution, we can simply rerandomize the starting
ideal (by some small ideal) and start over. More details about this approach are
given below.

Assuming that we can find enough solution pairs (u,v), for each one we have
to determine whether u and v are B-good, i.e. if we can write u = g, (22 + y2)
and v = g, (22 + y?) with the prime factors of g, and g, in B. Recall that a
number can be expressed as a sum of two squares if and only if all its prime
factors that are 3 mod 4 appear with an even exponent. The obvious choice is
then to set g, (resp. g,) to be the product of all prime factors that are 3 mod 4
and contained in B and dividing u (resp. v). To determine whether what is left
contains more prime factors 3 mod 4 we would need to factor w, which is too
expensive in general. As such we simply proceed by trial division up to a small
bound, hoping that what is left at the end is a prime that is 1 mod 4 (note that
we simply reject when it is 3 mod 4). If everything succeeds, we have found the
factorization of u, and hence its decomposition as a sum of two squares. The
same procedure applies to v. How to choose an optimal set B is analyzed in
greater detail in Section 6.1.
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Once we have found a full solution, we proceed to the next step: we will denote
the ideals a(?,al?) as b and ¢, so in particular, Ny = N (bz) and Ny = N(cz).

Rerandomization For some ideals, Equation (11) may not have a solution
with u, v of the required shape. As already observed, increasing the bound 9 is
always a possible solution, though this quickly becomes expensive.

Another solution to this is to simply rerandomize the starting ideal a. Namely,
if none of the sampled, equivalent ideals gives us a solution for Equation (11), we
can multiply a by a non-principal ideal [ for which the action is easy to evaluate
(e.g. an ideal above ¢, where £ is the smallest split prime). We obtain a new ideal
o/ = al and try to solve Equation (11) for this ideal instead. If we manage to
do so, we can simply run our algorithm on a’, using this solution, starting from
the starting curve E; = [ x E instead, which is easy to compute by the choice
of [. Otherwise, we can rerandomize again by computing a” = la’, and so on. As
soon as Equation (11) has a reasonable chance of being solved, this method takes
care of failures quite efficiently, making Step 1 faster at the cost of a few Elkies
steps. The average number of rerandomizations for different levels are reported
in Table 2.

Algorithm 2 FINDUV(a)

Input: a CZ [@] an ideal.

Output: Fail, flag indicating failure to find solution.

Output: b, by, cc,c CZ [@] ideals, such that bcbg ~ cecr ~ a.
Output: u,v, e positive integers, such that u - N(bg) + v - N(cx) = 2°, fore < f — 3.
1: Compute a list of short ideals a equivalent to a

2: Write a® = a((f)a,(f), such that N(a(ei)) is a product of primes in B
3: Sort the list by N(u,(f))

4: for all pairs (7,7) with 1 <i < j <10 do

5 Set Ny = N(al”), Ny = N(al)

6 Find all pairs (u,v) such that uN1 + vNy = 2¢, with e < f — 3
T: for each pair (u,v) do

8: Remove factors of B from u, v

9: Perform trial division on u,v > Bound depends on security level
10: if factors 3 mod 4 are found with odd exponent then

11: Continue to next pair

12: end if

13: if remaining part of u,v are both prime then

14: return False, uéi), ugf), agj), a,(cj), u,v, e

15: end if

16: end for

17: end for

18: return True, _, _, _, _, _, _, _.
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5.2 Step 2: computing kernel points

After determining a suitable pair of ideals b, ¢, our goal is to construct the 4-
dimensional 2°-isogeny described in Section 3.2. We now detail how to derive

the kernel of this isogeny. This subsection is summarized in Algorithm 3.
Let E denote the starting curve on which we want to act with a, then we
obtain the following diagram derived from the isogeny diamond in Section 3.2:
D= o

u
2

_ E
g'lQ -

[a,

W= @ o P, B2+ p2

O
Py

P,

.

E2
In the diagram above, we have:

— ¥y = diag(ye, , s, ), where g, is the isogeny corresponding to the action of
be; analogously, ¥p = diag(pc, ; ¢c. );

- &= diag(@bk’(phk) and @3 = diag(@cm@%);

— @, and @,, are isogenies of polarised degree u and v respectively; as explained
in Section 4.1, we can write @,, = M, diag(yw, u), with deg(vw) = gu, P» =
M, diag(p,, py) with deg(p,) = gy, M, and M, being given by Equation (9).

Further, the isogenies @ and ¥ are the isogenies of polarised degree uN; and
v Ny completing the square, whose existence is guaranteed by Lemma 2.2. In this
setting we can also describe them explicitly, as the following lemma shows.

Lemma 5.1. @ is of the form &} od

u?

where:

— @ = diag(py, , vy, ) E{* — E2 with E} := [bg] - E, and ©h, > the isogeny
associated to the action of by on Ef;

— @ = M, diag(¢.,, ) : B> — E'*, M, being given by Equation (9) and
©!, being the isogeny of degree g, given by the action of the same ideal I,, as
©u (as a product of Elkies primes).

W is of the form &, o @, where:

— &, = diag(¢}, , ., ) : E}* — E2 with B} = [tx] - By and @t , the isogeny
associated to the action of ¢, on Eb;
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— @, = M, diag(¢),, ¢,) : B> — E'*, M, being given by Equation (9) and ¢/,
being the isogeny of degree g, given by the action of the same ideal I, as @,
(as a product of Elkies primes).

In particular, the common codomain of{ﬁ and ¥ is a product of elliptic curves
B2,

Proof. We have to verify that @, o &, and &, o &, defined above are Nju and
Nyv-isogenies respectively making the diagram commute, i.e. such that:

@30@20@20@'2:@”0@20@10@” (12)

First, we verify that the composition on the left makes sense i.e. that &/, and
@' have the same codomain. By definition, the codomain of @/, is

E' = [1,)E] = [I,bi)E, = [I[,by1,)Ey = [I,1,bxc.|E
and the codomain of &/ is
E" = 1By = [1,&) By = (L1 Er = [L1,Txbe] E.

But b = b.b; and ¢ = c.c;, are both equivalent to a. It follows that byc. and ¢ b,
are equivalent, so that £’ ~ E". R

By construction, @] o @, and &, o P}, are Nyu and Nav-isogenies respectively,
so we only have to prove Equation (12). On the one hand, we have:

@) 0 &, 0P, 0 By = M, 0 M, o diag(¢}, © &), 0 @, 0 Bl , ¢4, © Py 0 @y 0 Br,),s
since Mu and M, commute with diagonal isogenies. On the other hand:
P, 0 52 od; o 5u =M, oM,o diag(@v 0 Dc;, © Pby, © Pu, Po © Doy, © Poy, © Puy)-

Both ‘p,bk o Py 0, 0P, and @, © P, © pp, © Py correspond to the action of the
ideal I,1,¢xbs on E,, so these isogenies must be equal. Besides, a simple matrix
computation ensures that M,, and M, commute. This proves Equation (12) and
the lemma. O

Let (P,Q) be a basis of F;1[2¢72] (recall from Section 3.1 that the theta
isogeny algorithm requires the 2¢t2-torsion to compute a 2°-isogeny, see Ap-
pendix A for more details). To compute the kernel of the isogeny in dimension
4, we need to compute the points

P, = @u(P)a Qu= Spu(Q)

on F, and

PUZSOUO@CkOQObk(P)a Q’U:@’antkowbk(cz)a

on F,.
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Isogenies of degree g, and g,. The isogenies @, and ¢, with deg(y,) = gu
and deg(p,) = g, have no specific requirement other than their degree. Although
it is possible to deal with all small primes via Vélu’s algorithm [64], it is more
efficient to restrict B to Elkies primes (i.e. splitting primes in Q(y/—p)) and we
can use the correpsonding algorithm [30] to compute the small degree isogenies.

Note that ¢, of degree ¢, and ¢, of degree g, can be used to construct
2-dimensional isogenies of polarised degree u = g, (22 + y2) and v = g, (22 +
y?2) respectively by composition with matrices M,,, M, described in Section 4.1.
However, we do not need to perform that step now, as it can be included in the
4-dimensional computation.

Working over F,. Note that, by definition, the isogenies ¢, and ¢, are -
rational, and as noted above, our choice of primes in B imply that ¢, and ¢, can
also be chosen to be defined over IF,,. The main difficulity comes from evaluating
these isogenies on a basis of E[2¢72], which is not defined over F,,.

We will show that all operations can in fact be carried out over the Kummer
line, where we have a rational basis. Let f the largest integer so that 2/ | (p-+1).
By our choice of prime, the two eigenvalues of Frobenius on E[2f~!] are +1. Thus,
we can pick a basis (P, Q) = E[2/71] corresponding to the two eigenvectors of
Frobenius; we let P, Q be points of order 2/~ satisfying

m(P) =P, 7(Q)=-Q. (13)

Clearly, these points P, are F,-rational on the Kummer line E/ £ 1, and
together (adjusting by translation by a point of 2-torsion if needed) they form
a basis of E[2f71]. This is where we use that we are on the surface. If we were
on the floor, picking similar points would not give a basis, since in that case,
[2/72]P = [2/72]Q, the unique rational point of 2-torsion.

In Appendix D.1 we show how to efficiently generate such a basis, based on
a technique which is similar to how one usually computes bases of F[2/] over

Fo.

Evaluating the ideals. The rest of this section will be devoted to the com-
putation of P,,Q,. In particular, we need to evaluate @, o yp, on a basis of
E1[2¢72]. From Equation (7) we know that

~

Pei © Pop = e © 1(a) © Po, (14)

1
N(be)N(c
with ©b = ¢O. By construction, N(b.) and N(c.) are both smooth, with all their
factors in 9. Let us assume for simplicity that they are also odd; the even case
needs a bit more care and is detailed afterwards.

We detail how to evaluate the endomorphism ¢(o). First, assume that o is of
the form a+b\/—p, with a, b € Z. Explicitly, this is mapped to the endomorphism
[a] + [b]m, where 7 denotes the Frobenius endomorphism. Evaluating such an
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endomorphism on our choice of basis is particularily easy: with the same notation
as in the previous section, the evaluation is simply given by

[al P+ [x(P) = [alP + [BIP = [a + b,
[a]Q + [7(Q) = [a]Q + [B)(~Q) = [a — b]Q-

Note in particular that we can evaluate this on the Kummer line. Although o
is an element of the order Z[@], and hence is more generally of the form
a + by/—p, where a,b are in Z[%], i.e. are rational numbers with denominator
at most 2, we show in Appendix D.2 how to evaluate this on our basis (on
the Kummer line) without having to use division points, which may not be
F,-rational.

Further, note that since we are after the action on the 2°t2-torsion, we
can compute (N (b.)N(c.))~! (mod 2¢%2), to account for the division in Equa-
tion (14). Hence, all that remains to evaluate @, o ¢p, is to describe how we
efficiently recover the isogenies yp, and ¢, .

These isogenies are (by definition) the product of prime degree Elkies isoge-
nies. More specifically, say that for a given prime ¢, we have v(N(b.)) = k, i.e.
¢ divides N(b,) exactly k times. Then b, will act with exactly k degree-¢ Elkies
isogenies. We can also assume that all these isogenies will be in the same direc-
tion, since otherwise b, and consequently b would factor through multiplication
by ¢, and we assumed that b was primitive (if it was not, the ideal b/¢ would
also be equivalent to a, but with smaller norm).

With Elkies’ algorithm, we can return both kernel polynomials of degree ¢
determining the two Elkies isogenies of degree ¢. To check which polynomial
corresponds to the correct isogeny, we check the eigenvalue of Frobenius, as
described in the original CSIDH paper [13, Section 3]. In more detail, assume
that (¢, /—p—A) = [ C b, i.e. we wish to evaluate the action of [. Since the roots
of the correct kernel polynomial h(z) are precisely the z-coordinates of the points
of order ¢, satisfying 7(P) = [\]P, we simply test this equality symbolically: we
have the equality

(a”,y") = N(2,y)  (mod h(z),y* — f(x)),

where f(z) is the polynomial coming from the curve equation. If these values
are not equal, we know that this kernel polynomial corresponds to the other
eigenvalue. Note that when we are doing multiple /-isogenies, we need only check
the eigenvalue of Frobenius for the first /-isogeny; after that, we can recognise
the right kernel polynomial to be the one not corresponding to the previous
j-invariant.

Remark 5.2. If b, and ¢, share some steps, we can perform those steps (corre-
sponding to the action of the ideal b, + ¢.) in advance, and start evaluating the
ideal action from the resulting curve. The advantage is twofold: first, we avoid
evaluating the same ideal twice. Second, we do not need to evaluate the com-
mon part on points. We can instead start computing P, and P, directly from
the codomain curve.
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Even norm part We now explain how to deal with even normed ideals. For
this, we write the ideal b, as

be = ber by

where by is an ideal of norm 27, and correspondingly for ¢.. As explained in
Remark 5.2, the shared steps of b, ¢, can be computed at the beginning, hence
we can assume that by and ¢y are coprime (i.e. the corresponding 2-isogenies go
in “opposite” directions). Writing f12 = fp + fc, we get that

n 1 n
Per © o = Nl YN (e yatie £ © U © Poe-

The only added difficulity that needs to be accounted for is that we cannot
find an inverse to 2912 modulo 2¢12.

We fix this by taking a basis of a larger torsion group. Using the same tech-
nique as for the odd normed case, we can thus evaluate

~ 1 N

(25121 0 B, 0 s, = W(pce ou(c) o Pp,,

and hence we can find the evaluation of @, oy, on E1[2¢"2] by instead starting
with a basis of E[2¢72+/12]. (We remark that by construction, we have e + 2 +

fiz< f.)

Algorithm 3 COMPUTEKERNELDATA(FE, b, c., by, ¢k, u, v, €)

Input: E a supersingular elliptic curve over F, defined on the surface.

Input: b., by, cc,cx CZ [@} ideals, such that bcby ~ cocp.

Input: u,v,e positive integers, such that u - N(bg) +v- N(cx) =2 fore < f — 3.
Output: KernelData necessary for computing the 4-dimensional isogeny.

Compute a basis P, Q of E[fol}A > See Appendix D to sample special basis.
Compute the isogeny ¢p, : E — E; using Elkies algorithm.

P1,Q1 = o, (P), ¢, (Q).

Double Pi,Q; until they are of order 2¢+2. > Nr. of doublings depends on ¢y, .
Write u = gu (22 + y2) and v = g, (22 + y2).

Compute a random isogeny ¢, : F1 — E, of degree g, using Elkies algorithm.
Py, Qu i= ¢u(Pr), pu(Q1)

Find a generator o of the principal ideal ¢ccxb.by.

9: Compute the isogeny ¢., : E — F», using Elkies algorithm.

10: Compute d = N(cor)™' (mod 2°72), where ¢,/ is the odd normed part of c.

11: P>, Q2 :=[d] 0 ¢c, 0 o(P),[d] 0 p¢. 0 0(Q). > See Algorithm 4 for evaluating o.
12: Double Py, Q2 until they are of order 2¢72. > Nr. of doublings depends on ¢, .
13: Compute a random isogeny ¢, : F» — E, of degree g, using Elkies algorithm.

14: Compute Py, Qv = ¢ (P2), ¢4 (Q2).

15: KernelData := [N (br), N(ck), Gus Tus Yus Gy Lo, Yo, Puy Qu,y Po, Qo).

16: return KernelData.
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5.3 Step 3: computing the 4-dimensional isogeny

In this step, we compute the 4-dimensional 2¢-isogeny isogeny F' : A, x A, —
E2 x A from Section 3.2 (defined in Equation (5)). We can actually be much
more explicit than in Section 3.2. From Section 5.2, we obtain that A, = E2,
A, = E? and A = E"?. In particular

F = @1O§u @2051,
P oD,y P, 0P

> B2 x E?> 5 B2 x E”.
Equation (6) also becomes:
ker(F)
= {([WMeu(P), uMiJeu(Q),
(9] My - M (9 0 Bey 096, (P), 90 0 By 0 96, (Q)) | P,Q € Eu[2°]}
= { (MM (P), (@),
My(0 0 Be, © 00 (P), 90 © By 0 90, (Q))) | P.Q € E1[2°]}. (15)

To compute F, we proceed with theta coordinates of level 2 and the al-
gorithms from [18] (see Appendix B). These algorithms require a basis of an
isotropic subgroup (for the Weil pairing) K’ C (E2 x E?)[2°72] such that
[4]K" = ker(F).

Let (P,Q) be a basis of E1[2¢72], ¢ = ege42(P,Q), m,a be in-
verses of Nj,uN; modulo 2°F2 respectively, (P,,Q.) = ©.(P,Q) and
(Py,Qy) = @y © @, © pu,(P,Q) the points computed in Step 2. Then,

applying Lemma A.1.(i) to F' and the (-symplectic basis (z1,22,y1,y2) =
((@bk (P)v 0)7 (07 Poy (P))a ([771]9051@ (Q)»O)v (07 [nl]@bk (Q)))v we obtain a basis

T, = ([leu}Pua [leu}Pua [xv]Pva [yv]Pv)
T2 = ([*leu]Puy [leu}Pua [7yv]va [IU]PU)
T3 = ([(1 = 2°0) 2] Qu, [(1 = 2°0)yu ] Qu, [170]Qu, [1190] Q)

Ty = ([ (1 = 2°0)yu)Qu, [(1 — 2°0Q) 24| Qu, [=11Y0] Qu, [M74]Qu),

of an isotropic subgroup K’ C (E2 x E?)[2¢72] such that [4]K’ = ker(F).
To compute F' and extract F, from its codomain, we take as input:

— The points P,, Q., P,, @, computed in Step 2.
— The integers N1, Na, gy, Tus Yu, Gvs To, Yo, € Obtained from a solution of Equa-
tion (11) obtained in Step 1.

This data is not only useful to compute 717,...,7T4 but also gluing and diagonal
isogenies located in the beginning of the 2-isogeny chain F' that must be handled
with care. For this technical reason, one must provide the data above and not
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T1,--- ,Ty or kernel points of F' directly. We refer to Appendix B for a detailed
presentation of the computation of F' with level-2 theta coordinates (following
the approach of [18]) and to Appendix A for a cryptographer friendly introduc-
tion to higher-dimensional isogeny computations with theta coordinates.

Remark 5.8 (Working over Fy, ). Using the basis from Equation (13) for our ellip-
tic curves, we can work with rational theta null points all along our dimension 4
isogeny chain. This is one of the reasons to work on the surface: on the floor,
the elliptic curve level 2 theta null points are not rational. Our kernel generators
have Frobenius-eigenvalue +1, so define F,-rational points on the Kummer va-
riety and thus their theta-coordinates are F,-rational (recall that level-2 theta
coordinates only give an embedding of the Kummer into projective space, not
of the whole variety). This allows us to do the full dimension-4 isogeny compu-
tation over F,, with the exception of the gluing isogenies. Indeed, as currently
implemented the gluing formulas mix points with eigenvalue 1 and points with
eigenvalue —1, so we need to temporally work over IF,.. We expect that using
more symmetric gluing formulas would allow us to stay over IF,, even for gluing,
but we leave that for future work.

6 Implementation results

In this section we describe different implementation choices and their relative
efficiency tradeoffs. We give concrete timings, and compare them with the cur-
rent state of the art of group action primitives. Our implementation is publicly
available at https://github.com/pegasiséd.

6.1 Parameter choices

Since our algorithm relies on higher dimensional representations of isogenies, we
start with choosing primes of the form p = ¢2/ — 1, ensuring that the full 2/-
torsion is defined over F,2. Furthermore, since the probability that Equation (11)
admits a solution, depends heavily on how close 2/ is to p, we restrict to the
case where c is small.

Among the possible choices for ¢ we retain those that maximize the number
of small primes that split in O, and in particular, primes that are 3 mod 4, since
these will greatly increase the probability of finding 9B-good pairs (u,v). Note
that prime factors of ¢ will automatically be split.

To choose the set B, we proceed as follows: we only include split primes
in B, which has 3 advantages: first, we can execute the whole algorithm over
F,, instead of over F,., resulting in a major speed-up. Second, it allows us
to use Elkies’ algorithm to compute small degree isogenies without explicitly
constructing kernel points over extensions of I,,. Third: such split primes are the
only ones that appear as factors of norms of primitive ideals in O.

The number of primes to include in 95 is mostly a tradeoff between steps 1
and 2: including more primes in B makes Equation (11) easier to solve (step 1
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becomes faster), but step 2 will have more (and larger) Elkies isogenies to com-
pute. For each parameter set, we started by setting B = {2, 3} and progressively
added primes until computing ¢-isogenies would become too expensive. We then
selected the set with the best overall timing. The final choices are reported in
Table 1. A more detailed discussion of the selection process can be found in
Appendix E.

Parameter set ‘ f c B
500 503 33 2,3,7,11, 13
1000 1004 15 2,3,5,7, 11
1500 1551 9 2,3,5, 11
2000 2026 51 2,3,7, 11, 17
4000 4084 63 2,3,7, 11,17, 19

Table 1. Parameter sets used in our implementation for different bitsizes. The prime
p is of the form p = ¢2f — 1 and B is the set of small split primes used.

6.2 Solving the norm equation

The first step (Section 5.1) begins with creating a reduced basis of the starting
ideal a, followed by a search for small vectors. We are looking for short vectors
of (reduced) norm roughly ,/p, but we allow them to be slightly larger at this
point (up to log(p),/p). We then attempt to solve Equation (11) by taking pairs
of the shortest vectors. In general, the more pairs, the higher the probability to
find a solution. However, the first combinations will be the smallest ones, hence
the ones with the highest probability of success. In practice, we observed that
taking combinations only involving the 10 shortest vectors, and rerandomizing
upon failure, was the most efficient choice for all parameter sets.

Finally, for each pair of (u,v) that we obtain, we have to attempt to write
u/g, and v/g, as sums of squares. For this, we do trial division on both with
all prime factors up to 10* for the 500 and 1000 bits parameters, and up to 10°
for all larger parameters. If we find factors 3 mod 4 (with odd exponent) not
included in 9B, we immediately discard the pair. Otherwise, we test what is left
for primality. If they are prime, we have the factorization of (u,v) and hence
their decomposition as sum of two squares. Otherwise, we move on to the next
pair.

6.3 Implementation results

The results of our SageMath 10.5 implementation can be found in Table 2;
timings for each step are in seconds, and are obtained by averaging 100 runs on
an Intel Core 15-1235U clocked at 4.0 GHz.
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Prime size (bits) Prime Time (s) Rerand.

Step 1 Step 2 Step 3 Total

508 3-11-2%03 1 0.097 048 0.96 1.53 0.17
1008 3-5-21004 _ 1 0.21 1.16  2.84 4.21 0.07
1554 32.91551 _1 1.19 285 649 105 1.53
2031 3-17-22026 _1 1.68 834 11.3 21.3 0.70
4089 32.7.21084 _ 1 156  52.8 535 122 0.41

Table 2. Timings in seconds for SageMath 10.5 PEGASIS implementation to evaluate
one group action at different prime sizes, measured on an Intel Core i5-1235U CPU
with maximal clock speed of 4.0 GHz. The last column indicates the number of ideal-
class rerandomizations required to find a solution in Step 1. These results are averaged
over 100 runs. Step 1 is the time used to solve the norm equation, Step 2 is the time
used to derive the kernel of the dimension 4 isogeny, and Step 3 is the time used to
compute the dimension 4 isogeny.

We conclude this section with a more detailed comparison with the other
available isogeny-based EGAs in the literature. The comparison is summarised
in Table 3. The timings for SCALLOP [21] were measured on an Intel i5-6440HQ
processor clocked at 3.5 GHz, while the timings for SCALLOP-HD [14] were
measured on an Intel Alder Lake CPU core clocked at 2.1 GHz, and the tim-
ings for PEARL-SCALLOP [3] were measured on an Intel i5-1038NG?7 processor
clocked at 2.0 GHz. The timings for the two versions of KLaPoTi [50] were all
re-measured on the same hardware setup as the timings presented in Table 2.

PEGASIS is the first instantiation of an EGA at the 2000-bit and 4000-bit
security level. In fact, it is even the first time that the full CSIDH group action
can be computed at the 1000-bit level. However, as Table 3 shows, PEGASIS
also significantly outperforms all earlier works at their security levels. The closest
comparison comes with the Rust implementation of KLaPoTi. However, the fact
that KLaPoTi was able to achieve a speedup by two orders of magnitude simply
by switching from a high-level SageMath implementation to a low-level Rust
implementation is also very promising for PEGASIS. Under the assumption that
a comparable speedup would be possible for PEGASIS, we see that PEGASIS
gives a highly-practical EGA, even at the highest security levels.

One of the main reasons of this efficiency gain is that unlike all the other
EGA instantiations, we are able to use the orientation given by Frobenius. This
has three key benefits:

— Evaluating the orientation is very efficient,
— We do not need to represent, nor push forward the orientation,
— We can work over F,.

The price to pay is the need to go up to dimension 4 to compute the action,
but as Table 2 shows, it is still reasonably efficient. We stress that our imple-
mentation is only a proof of concept, to explore whether level 4000 was feasible
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Paper Language Time (s)

Approx. prime size (bits)
500 1000 1500 2000 4000

SCALLOP [21]* e 35 750

SCALLOP-HD [14]* Sage 88 1140

PEARL-SCALLOP [3]* e 30 58 710

KLaPoTi [50] :igsi 12.32

PEGASIS (This work)  Sage 153 421 105 213 121

Table 3. Comparison of PEGASIS and other effective group actions in the literature.
Timings in seconds of different implementations to evaluate one group action at dif-
ferent (rounded) prime sizes. The SCALLOP variants are starred because they were
measured on different hardware setups. The results of both KLaPoTi and PEGASIS
are averaged over 100 runs and measured on the same hardware.

in practice. In particular, we are missing many standard implementation tricks;
as a simple example, we work with affine coordinates instead of projective co-
ordinates. Despite this, our timings are very encouraging, and we hope a low
level optimised implementation could even be made comparable in efficiency to
a state-of-the-art implementation of CSIDH ran as a REGA, like in [11].

6.4 Further improvements

As described in Section 4.2, it is possible to force only one among u/g, and
v/gy to be a sum of squares, and perform the other isogeny in dimension 4.
Note that such 4-dimensional isogeny will have only half of the length of the
isogeny that we perform at the end, thus being twice as fast (at least, since the
isogeny computation is quasi-linear in its length). On the other hand, steps 1
and 2 would both become much faster. This approach hence becomes promising
as soon as the 4-dimensional isogeny computation has a cost comparable to step
2, which is the case for the 2000 and 4000 parameter (see Table 2). For such
parameters, we computed the first two steps of the algorithm, with 8 = {2,3,7}
in both cases; the results are reported in Table 4. We note that the number of
rerandomizations stays comparable whilst the total time for step 1 and step 2
notably decreases.

Estimating the cost of one w-isogeny in dimension 4 as half of the cost of
step 3 in Table 2, we expect to reach 21.3 seconds for the 2000 parameter and
106.2 seconds for the 4000. This approach is hence comparable to ours in the
former case, and even faster in the latter. We leave its implementation as future
work. On the other hand, doing both v and v using 4-dimensional isogenies is
less efficient at all security levels we considered.
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Prime (bits) Prime Time (s) Rerand.

Step 1 Step 2 Total

2031 3-17-220%6 _1 0.49 3.83 4.32 0.70
4089  32.7.21084 _ 1 3.25 22.8 26.0 1.25

Table 4. Time taken to compute Step 1 and Step 2 when solving the norm equation
with single sum of squares, measured in wall-clock seconds. The last column gives the
number of rerandomizations needed. These results are averaged over 100 runs.
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A An introduction to efficient higher-dimensional isogeny
computation

In this section, we explain how higher-dimensional isogenies are computed with
the theta model. We use the algorithms introduced in [18] for SQIsignHD [19]
and the attacks against SIDH. In Appendix A.1, we first introduce some basic
theory on theta coordinates in a cryptographer-friendly way. We then briefly
explain how to change theta coordinates to obtain a system of theta coordinates
adapted to a 2¢-isogeny, how such an isogeny is computed and how to obtain
theta coordinates from Montgomery (z : z)-coordinates on a product of Mont-
gomery elliptic curves. In Appendix A.2, we give more details on changes of
theta coordinates adapted to an isogeny obtained from Kani’s lemma and how
to decompose the codomain into a product.

A.1 Some theory on theta functions

We recall some basics on the theta model. We refer to [20, § 2.1] for a cryptogra-
pher friendly introduction. Let (A, \) be a principally polarised abelian variety
of dimension g over an algebraically closed field k. The polarisation A : A — Ais
induced by an ample divisor D on A as follows A = Ap : A = A,z — [t:D — D).
Without loss of generality, we can assume that D is symmetric [-1]*D ~ D.
Since A is a principal polarisation, ker(\) = {0}. We define the polarisation of
level n as Ao [n] = A,p : &+ [tinD — nD] whose kernel is ker(X o [n]) = An].

Theta-structures. Formally, a theta-stucture ©,, of level n on (A4, Ao [n]) is an
isomorphism between the Heisenberg group H(n) of level n and the theta-group
G(nD) of nD, ©,, : G(nD) = H(n), that we do not define here. However, this
level of abstraction is not needed in the following. The reader only needs to know
that a theta structure ©,, induces a system of coordinates (0;);c(z/nz)ys (Where
g = dim(A)) called theta-coordinates. They define a map into the projective
space A — IP’Z’Q_l, x> (05(2))ic(z/nz)s Which is an embedding when n > 3 [45,
p. 163] and induces an embedding of the Kummer variety A/+ < Pig_l when
n = 2 and A is not a product [8, Theorem 4.8.1]. In practice, we work in level
n = 2 so theta-coordinates represent points on the Kummer variety i.e. points
up to a sign.

A polarised abelian variety with a level n theta structure (A, A o [n], O,,) is
generally too much data to represent on a computer. Usually, we represent it by
its associated theta null point (0;(0));c(z/nz)s- When n = 2 we do not have a
guarantee that the theta null point fully determines (A, A o [n],©,,) . However,
this information is enough in practice to perform arithmetic computations on a
polarised abelian variety (A, Ao [2]) that is neither a product nor 2-isogenous to
a product. These arithmetic operations include doubling = — 2z and differential
addition z,y,x —y — x +y (see [53, Algorithm 4.4.10]).
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Change of theta-coordinates. A symmetric theta structure of level n is fully
determined by a symplectic basis of A[2n] [44, Remark 3, p. 319]. Such a basis
(S1,-++,8g,Th,- -+ ,Ty) of A[2n] satisfies:

VI<j<n, en(SiS;)=en(T;T;)=1 and e2,(S;T;) = (%,

where eg;, is the 2n-th Weil pairing and ¢ € k is a primitive 2n-th root of unity.
Such a basis is called a (-symplectic basis. In the following, we shall always
assume that theta structures are symmetric.

A change of symplectic basis induces a change of theta structure, hence a
change of theta coordinates. Namely, let ©,, and ©! be two theta-structures
and respectively induced by (-symplectic basis # and %’ of A[2n]. Let M €
Spy,(Z/nZ) be the change of basis matrix from % to #'. Let (6;); and (6}); be
the systems of theta-coordinates associated to ©,, and O] respectively. Then,
there is an explicit matrix N(M, () € GL, (k) such that (6;); = N(M, ) - (6:):
that can be computed as follows.

Theorem A.l. [18, Theorem 12] Let us write the symplectic change of basis
matriz from B to B’ by g x g blocks:

- (35)

Then, there exists ig € (Z/nZ)% and X\ € k* such that for all i € (Z/nZ)9,

/ i|7)—(Ai+Cj+2ig|Bi+Dj
0=\ Z <<1|J> (Ai+Cj+2io|Bi+ j>9Ai+Cj+im

JE(Z/nZ)9

where (i|j) := >"7_, irjr is the usual scalar product. We can choose any value
of ig € (Z/nZ)? such that

Z <—<Cj+2io\Dj>9io+Cj # 0.

JE(Z/nT)9
Isogeny computations. Let FF : A — B be a d-isogeny. If
B = (S1,---,8g,Th,---,Ty) is a (-symplectic basis of A[4d]
adapted to F i.e. such that ker(F) = [4(T1,---,T,), then € =

([dF(S1),- -, [dIF(Sy), F(T1),--- ,F(T,)) is a (%symplectic basis of B[4]
[19, Theorem 56]. In particular, it means that if we work with theta coordinates
(Qf)ie(z/gz)g induced by the symmetric theta structure associated to [d].Z on
the domain, then the codomain theta coordinates (eiB)Z'G(Z/QZ)g will be induced
by the symmetric theta structure associated to %.

When d = 2, [18, § 4.2] provides formulas to compute the codomain theta null
point (67(0));e(z/22)s from the theta coordinates of 11, ,T,. The codomain
theta null point (07(0)); is then sufficient to evaluate F i.e. to compute
(0B (F(x))); given (0P (x)); for all z € A(k). Hence the codomain theta null

point not only represents the codomain B but also the 2-isogeny F' itself. When
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we say that we compute F, we usually say that we compute its codomain theta
null point (and relevant information trivially derived from it). Note the main dif-
ference with Vélu’s formulas: 8-torsion points 71, -, Ty are necessary for this
computation; 4 or 2-torsion points would not be sufficient.

When d = 2¢, and F = f.o---0 f; is a chain of 2-isogenies, a choice of
symplectic basis % adapted to F' (i.e. such that ker(F) = [4[(Ty,---,T,)) in-
duces a choice of level 2 theta-structure on the codomain of f; associated to
267 fi0---0 f1([2°]S1, -+ ,[29Sy, Th, -, Ty) for alli € [1 ; €], so that we can
propagate the formulas from [18, § 4.2] along the chain.

When F has been obtained via Kani’s lemma, it is defined on a product of
abelian varieties (e.g. a product of elliptic curves) so the first steps of the chain
are gluing isogenies f : A1 X As — B that need to be handled with extra care
since the formulas are different to compute them. Splitting isogenies along the
chain f: A — B; X By also require some attention because point duplications
x +— 2z are more difficult on their domain and codomain than generic ones. In
particular, we need to detect these gluings and splittings in advance. This will
be the main focus of Appendix B in our special case of interest (when F' is the
isogeny from Section 5.3).

As in dimension 1, divide and conquer strategies can be applied to minimize
the number of duplications and isogeny evaluations required to compute a 2-
isogeny chain F' = f.o---o f;. These strategies can also be adapted to take into
account the specific constraints imposed by gluing and splitting isogenies and
their relative cost. With 4-dimensional computations in mind, more details on
these strategies can be found in [18, Appendix EJ.

Product theta-structures. When we compute isogenies obtained via Kani’s
lemma, we start and terminate on a product of abelian varieties which are natu-
rally equiped with a product theta-structure. If A = A3 x Ag and (A1, A1), (Asz, \2)
are principally polarised abelian varieties, we consider the product polarisation
A= A1 X A2 (2,y) = (M), A2(2)). If O is a level n theta-structure on
(A;, \; o[n]) induced by a (-symplectic basis &; = (S§i)7 e ,Sg?, Tl(i)7 e ,Tg(f))
of A[2n] and of associated system of theta-coordinates (in)je(z/nz)gi for i €
{1,2}, then we can define the product theta-structure ©,, := O x ©42 on
(A, \) as follows. It is the level n theta-structure induced by the (-symplectic
basis of A[2n]:

B = B0 x By = ((SD,0), - 7(55})70)7(0759)7... (0,82,
(T1(1),0)7”_ (T )’(0)T1(2))7... ,(07Tg(3))). (16)

g1 ?

The theta-coordinates (934) je(/nz)yor+e2 associated to O, = 01 x B2 are given
as follows:

V(z,y) € Av(k) x Az(k), (j1,j2) € (Z/nZ)# 92, 07 . (x,y) = 0 ()03 ((y)-)
17
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In the context of a 2¢-isogeny computation F : A — B (n = 2¢72), we usually
start with a product theta-structure induced by % and we have to compute a
change of theta-coordinates induced by a change of symplectic basis from % to
P = (S1,--+,8¢, 11, ,T,) such that ker(F) = [4|(T1,--- ,Ty).

The codomain is also often a product B = B; X By but the level
2 theta-structure on the codomain induced by F is associated to ¥ =
([2°]F(S1),- -, [2°]F(Sy), F(Th), -+ ,F(Ty)) which is not a product theta-

structure. A change of theta-coordinates is necessary to recover the product
theta-coordinates on B. Once this has been done, we obtain the theta-null point
of the product (67 ; (0));, j, = (Hﬁl (0) - HjB;z (0))j,,» from which we can infer
the theta-null points (9}31' (0)); of each component B;, which can then be used to
determine the polarised abelian variety (B;, Ap, ©[2]). In Appendix A.2, we shall
see how to compute the necessary change of theta-coordinates for this splitting
operation when F' is obtained from Kani’s lemma and apply this method to our

case of interest (when F' is the isogeny from Section 5.3) in Appendix B.4.

Theta-structures on Montgomery curves. In our context, we work with
isogenies between products of elliptic curves. These elliptic curves are equipped
with a Montgomery model over > (and even IF,, for CSIDH) so we need to con-
vert this model into a level 2 theta model. Conversely, we also need to translate
a level 2 theta model obtained after the splitting operation mentioned above
into a Montgomery model. The focus of this paragraph will be to explain these
conversions.

If E is a Montgomery curve, then Montgomery (z : z)-coordinates and
level 2 theta coordinates (6 : 61) both induce Kummer lines i.e. isomorphisms
E/+ = P! Hence, a change of coordinates between theta and Montgomery is a
homography. In [55, Chapter 7, Appendix A], formulas were introduced to ex-
press such a homography when the theta structure is symmetric and associated
to a 4-torsion basis of specific shape.

Let E be an elliptic curve in the Montgomery model and (P, Q) be a basis of
E[4] such that @ := (—=1:1) (in (z : ) coordinates). Let us write P := (r : s).
Then, we may define a level 2 theta-structure on E with theta-null point (a :
b) := (r+s:r—s). The conversion map from Montgomery to theta coordinates
is then (z : 2) — (a(z — 2) : b(x + 2)).

Conversely, if (a : b) is the theta-null point, the conversion map from theta to
Montgomery coordinates is (6g, 1) — (afy + b6y : aby — bby). Via this map, the
2-torsion theta points (b : a), (a: —b) and (b: —a) are mapped to the 2-torsion
Montgomery points (a? + % : a* —b?), (0 : 1) and (a® —b? : a® +b?) respectively.
Identifying the 2-torsion, we can then obtain the Montgomery equation of E:

By? = z(z —a)(x — 1/a) = 2® + Az? +

with o := (a® +b?)/(a® — b?) and A := —(a +1/a) = —2(a* + b*)/(a* — b*). To
identify B, we need to know a full point of 4-torsion (z : y : z) on E. This will
be important in our context to distinguish the result of the CSIDH class group
action E, from its quadratic twist over I, (see Appendix B.4).
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As we have seen previously, a fixed Montgomery curve E has several level 2
theta structures related by symplectic matrices between 4-torsion basis. Using
Theorem A.1, we can then obtain theta structures which are not induced by a
4-torsion basis (P, Q) with (z(Q) : 2(Q)) # (=1 : 1). Conversely, from different
theta structures on E, we obtain 6 different possible Montgomery coefficients A
from the conversion formula (6y,601) — (a1 + by : ad; — bby).

Proposition A.1. Let (a : b) be a level 2 theta null point on a Montgomery
curve E associated to a symmetric theta structure. Then all possible Montgomery
coefficients of E are of the form:

72a4+b4 7a4+6a2b2+b4 ¢ a* — 6a2b? + b*
a* —b*’ 2(a3b+ b3a) ' 2(adb— b3a)
a* 4+ vt a* 4 6a%b? + b* a* — 6a?b? + bt

—Ga

at —vt’ 2(a3b + b3a) ’ 2(a3b — b3a)

where (4 is a Toot of —1. They correspond respectively to theta null points:

(a:b), (a+b:a—=0>), (a+(sb:a—{4d),
(b:a), (a—b:a+b), (a—Csb:a+(d).

Proof. Let (P,Q) be a basis of E[4] inducing a symmetric theta structure of
theta null point (a : b) and let {4 := e4(P, Q). Then, enumerating all symplectic
matrices of Spy(Z/47), we obtain all (4-symplectic basis (P, Q') of E[4] inducing
symmetric level 2 theta structures of theta null points (a’ : b") obtained from
(a : b) by Theorem A.1. We can then compute all corresponding Montgomery
coefficients A’ := —2(a’* + v'*)/(a/* — ¥'"). O

A.2 Theta structures on the domain and codomain of an isogeny
obtained from Kani’s lemma

In the following lemma, we give an explicit description of a symplectic basis
adapted to an isogeny obtained from Kani’s lemma (in point (i)). By Theo-
rem A.1, this can be used to compute a change of theta coordinates from product
theta coordinates on the domain before starting the isogeny computation. We
also describe a symplectic basis associated to a product level 2 theta structure
on the codomain (in point (ii)) and its relation with the symplectic basis natu-
rally induced by F via [19, Theorem 56] (in point (iii)). Using Theorem A.1, the
resulting symplectic change of basis matrix can be used to compute the product
theta null point and product theta coordinates on the codomain. In particular,
we can ”extract” components of the codomain.

Lemma A.1. Let a and b be odd and coprime integers and d := a+ b not divis-
ible by char(k). Consider an (a,b)-isogeny diamond (as defined in Lemma 2.3)
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between PPAVs of dimension g:

and the associated Kani d-isogeny:

~/
F=|¥ ¥ cAxB - BxA.
- ¢

Let (1, -+ ,%g,Y1, - ,Yq) be a (-symplectic basis of B[4d]. Let a and B be
modular inverses of a and b modulo 4d respectively.

(i) For alli € [1; g], we denote:
Si = ([=al@(y:),0),  Sitg = (0, [BIY' (2:)),

Ti = (@(:), ¥ (1)),  Titg = ([1 — ad]@(ys), ¥’ (12))-
Then (Sv,- -+ ,S2g,T1,- -+ ,Tag) is a (-symplectic basis of (Ax B')[4d] adapted
to F i.e. such that ker(F') = [4](T1,--- ,Tag).
(i) For alli € [1; g], we denote:

Ui i= ([d]2i,0),  Uig = (0, [d]y o (),

Vi = ([d]yz, 0); V;-&-g = (07 [daﬁ]i/) o Sz(yz))

Then (Uy,-++ ,Uzg, Vi, ,Vag) is a product (%-symplectic basis of (B x
A")[4].

(iii) The (-symplectic basis ([d)F(S1), -+ ,[d|F(Sag), F(T1), -+, F(Tsy)) of
(B x A)[4] naturally induced by F wia [19, Theorem 56] is related to
(U, ,Usg, Vi, -+, Vaq) by the following formulas. For alli € [1; g]:

[dIF(S:) = =Vi+ [b]Vitg, [dF(Sitg) = Ui + [B]Uitg,

F(Ti) =Ui, F(Titg) = [0]Vitg,

so that:
Ui =F(T3), Uitg = [bd]F(Sitg) — [bIF(T3),

Vi=F(Tiyg) = [dIF (i), Vigg = [BIF(Titg).

Proof. (i) For all principally polarised abelian varieties C and D, we denote A¢
the principal polarisation on C' and A X Ap the product (principal) polarisation
on C'x D. Then, since (x1,--- ,2g, Y1, - ,Yq) is a (-symplectic basis of A[4d], we
have the following results for the 4d-th Weil-pairing associated to the product
polarisation Ag X Ap::
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2

ey (5,,8;) = eda ([—al@(y), [—a(yy)) = e (i, yy) ™ =1

€7 (812 Sjtg) = €43 ((=0)B(u), 0)esf (0, (B0 (25)) = 1
i (T Ty) = edf (B(wn), Bleg)end’ (W' (wa), ¥/ () = €4 (i, 2)** =1

QN (T, Tyag) = 33 (B(i), [1 — adB(y;))ers’ (W (2:), ¢ (y7))

A - A
= e (i, ;) 00D = = eyt (zi,y;)° =1

€ (80 Ty) = e3d (=l @w), Blap)ess (0.4 (x5)) = e (g, 30) = ¢

ey (8, Ty ) = edd ([—al@(wi), [1 — ad)B(y;))es (0,4 (y;))

= eif (v, )"0 =1

et (Sitg, Ty) = eya (0,8(x))ers (1B (), 4 () = e3s (wi,2)P =1

it (Sivgs Trvg) = €13 0, [1 = adi@ly))eaf (1810 (2:), ¥ (1))
= 3 (i, )" = €4 (i) = ¢,

for all 4,7 € [1; g]. Hence, (S1,---,S24,T1,--- ,Tag) is a {-symplectic basis of
(A x B')[4d]. Since ([4]x1,-- , d]zg, [A]z1,- -, [4]yy) generates Ald], we clearly
have by Lemma 2.3:

[ANT, -+, Tag) = {([a]z, ¥ 0 (@) | & € A[d]} = ker(F).

This proves (i).
(ii) B := (U1, - ,Usq, Vi, -+, Vaq) is the product %, x %> with

P = ([d]xh R [d]x.q’ [d]y17 I [d]yq>

By = ([dlp o p(xr), -~ [dlyp 0 p(zg), [daflp 0 §(y1), - -, [daflip o P(yg))-
And we have for all 4,5 € [1; ¢]:

e2” ([, [da;) = e4f (i, 2)" =1
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€2 ([dlyi, [d]y;) = €3f (yiy;)* = 1
ex” ([dlz, [d]y;) = €3 (xi,y;)" = (9,

so %, is a (%-symplectic basis of B[4]. Similarly, we verify that %, is a (%
symplectic basis of A’[4]. It follows that Z = %) x %s is a product (%-symplectic
basis of (B x A’)[4], as desired.

(iii) The fact that ([d]F(S1), - ,[d]F(Sag), F(T1), -+ ,F(Ty,)) is a (%
symplectic basis of (B x A’)[4] follows from [19, Theorem 56]. It remains to
compute for all ¢ € [1; ¢]:

[d|F(Si) = [dIF([=ad¢ (i), 0) = ([=dafp o §(yi), [dal o p(yi))

([=daalys, [dai o §(yi)) = =Vi + [b]Vig

[ (Sig) = [P (0, [B1¢ (x:)) = ([dB]Y" o ¢/ (), [dB]¢" o ¢ (1))
= ([dBblzs, [dB)y o p(xi)) = ([d]w:, [dB]Y o p(z4))

~—

F(T,) = F(3(x), ¢/ (2:)) = (00 3w:) + 4 0 ' (w:), =t 0 Flws) + ¢ 09 (w7)
= (la+blai, = 0 @(z:) + P 0 §(x:)) = ([d]zi,0) = Us

F(Tirg) = F([1 — ad@(yi), V' (i)
([1 - adlp o G(y:) + 9" 0¥ (y:), —[1 — adlyp 0 B(y;) + ¢’ 0¥ (y:))
(la(1 — ad) + bly;, [ad — 1+ 1)1 0 3(y:)) = (0, [d]r 0 §(y:)) = [0]Vitg,

where we used twice the fact that 1/ o ¢ = ¢’ o ¢ implies that ¢ 0 ¢’ = 1) o @.
The inverse equations:

Ui = F(Ti), Uipg = [bd]F(Sitg) — [b]F(T5),

Vi= F(Ti+g) — [d]F(S:), Vigg = [/B]F(Ti-&-g)v
follow immediately. This completes the proof. O

B Implementing the 4-dimensional isogeny computation
for the CSIDH group action in the simplest case

In this Section, we explain how to compute the 4-dimensional isogeny F : E2? x
E2 - E2x E'? from Section 5.3. We compute F' as a chain of e 2-isogenies, using
the algorithms from [18, § 4]. The general approach is very similar to SQIsignHD
verification and SIDH attacks described in [18, § 5 and Appendix B].
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B.1 Where are the gluings and splittings?

Because the formulas for gluing isogenies are different, we need to handle gluings
with special care and locate them in advance in the 2-isogeny chain. We have
the following result, very similar to [18, Lemma 23]:

Lemma B.1. Without loss of generality, we can assume that 2|y, and 2|y,. Let
m = vo(TypYy — TulYv). Then F is of the form F = G o Fy,p 10 Fp0---0 Fy,
where

F1 F2 F7n 1

A2 A2 s A2 L*gB

E2 x E?

18 a chain of 2-isogenies, the A; are principally polarised abelian surfaces and B
is a principally polarised abelian variety of dimension 4. For all, i € [2 ; m], F;
is a diagonal isogeny Diag(f;, f;) with f; : A;—1 — A;, a 2-dimensional 2-isogeny
and Fy : (RhSl,RQ,SQ) — (fl(R1,R2)7f1(S1,SQ)) with f1 : By, X B, — A1, a
gluing 2-isogeny.

Besides, the 2-dimensional 2™ -isogeny @ := fp, 0--- o f1 has kernel:

ker(®) = {([Nzu]pu(P); [gu(Tuto + Yyuy)]ow © Bey © @6, (P)) | P € E1[27]}.
Proof. By Eq. (15), we have:
ker(F) = {([uN1]@wu(P), [ulN]pu(Q),
[9u] My - My (00 0 Bey, 0 00, (P), 00 © 8oy, 0 96, (Q))) | P,Q € Eu[2°},

so the first m isogenies of the 2-isogeny chain have kernel:

ker(F,, 00 Fy) = [2°""] ker(F)
= {([uN1]pu(P), [uN1]ou(Q),
[9u(Tuo + Yuy)lpv © Pe, © pu,. (P)
+ [9u(ToYu — TuY)]Pw © Pey © 91, (Q),
= [9u(ToYu — Tul)]Pw © Be;, © Pp, (P)
(

+ [gu(ﬂvuxv + yuyv)]@v o <)0Ck O Yoy, Q)) ‘ P,Q € E; [Qm]}
= S(K x K),

with S: E2 x E? — (E, x E,)?, (R1, 51, R2, S2) — (R1, Rz, S1,S2) and
K = {([Nzu]ou(P), [gu(Tuzo + Yyulo)lpw © e, © @6, (P)) | P € E1[2]}.
It follows that (F,, o---o0 F;) o S~!is a diagonal 2™-isogeny
Diag(®,®) : (B, x E,)* — A%

with ker(®) = K, so the F; and F have the desired form. O
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Locating splittings in the isogeny chain computation is also important. In-
deed, on abelian varieties 2-isogenous to a product of abelian varieties, the
generic doubling procedure [18, Algorithm 8] may fail because of zero divisions.
Doublings are involved to obtain kernel information at every step of the isogeny
chain but we have some flexibility on the abelian variety where these doublings
take place along the chain, depending on the computational strategy we use. As
in [18, Appendix E], we use computational strategies that do not involve dou-
blings on codomains of splitting isogenies. Using the structure of the polarised
dual F, we obtain the

Lemma B.2. Assume that 2|y,,y, and let m = vo(Tyyu — TuYp) as in
Lemma B.1. Then F is of the form F = F,o0---F,_,, o G', where

Fo_ Fe_ Fo_ Fe_ F
/ e—m 2 e—m-+1 2 e—m-+2 e—m-+2 2 e 2 N2
B Ae—m Ae—m+1 e Ae—l Eu X (E)

18 a chain of 2-isogenies, the A; are principally polarised abelian surfaces and
B’ is a principally polarised abelian wvariety of dimension 4. For all, i €
[e—m+1; €], F; is a diagonal isogeny Diag(f;, fi) with f; : Ai_1 — A;, a
2-dimensional 2-isogeny and F, := S’ o Diag(fe, fe) with f1 : Ae—1 = Eq X E/,
a splitting 2-isogeny and S’ : (E, x E')? — E? x E'?, (Ry,Ry,51,5;)
(R1, 51, R2, S2).

Proof. The polarised dual F : E2 x (E")? — E2 x E2? is given by:

Fo Pucd —®, 0
—P, 0Py P! o
and its kernel is:

ker(F) = {([ulN1]P, [uN1]Q, —®, 0 &, o B, 0 &1 (P,Q)) | P,Q € E4[2°]}

= {([uN1] P, [uN1]Q, =M.} - M, (¢ 0 &, 0 oy © P1(P),
P30 P, 0000 01(Q))) | P,Q € Eo[2°]}

= {([UNI]SOu(P)a [UNl]‘Pu(Q)a
— [Zuy + Yuyolps 0 B, 0y 0 Gi(
— [TuYo — mvyu]SD/Z © 322; 0y © P1(
[Tuyo — Toyulh © B, 0 pu 0 P1(P)
— [TuTy + Yuyulps 0 B 0 pu 0 P1(Q)) | P,Q € Eq[2°]}

P)
Q),

AR

1
1

It follows that _
ker(F)[2™] = S"(K' x K'),

with:
K' = {([uN1]P, = [zu20 + Yulolps © @), 0 pu 0 §1(P)) | P € Ea[2™]}.

We then easily conclude that F' has the desired form. O
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By Lemma B.1, to compute F', we first have to compute a 2-dimensional 2-
isogeny chain ¢ := f,, 0---0 fy : B, x E, = A,,, then a 4-dimensional gluing of
abelian surfaces F, 11 : A2, — B and e—m—1 generic 4-dimensional 2-isogenies.
Except for the first m steps and splitting at the end, we do not have a way of
detecting products of abelian varieties located elsewhere in the 2-isogeny chain.
However, they can appear with very low probability O~(1 /D) S0 we can assume
there are none and treat the e —m — 1 last 2-isogenies as generic ones.

Hence, we proceed as follows to compute F':

1. We compute the 2-dimensional isogeny @ := f,,0---0 f1: By, X B, = A,
(Appendix B.2).

2. We compute the gluing isogeny F,11 : A2, — B (Appendix B.3).

3. We compute the last e — m — 1 2-isogenies of the chain as generic isogenies
with a computational strategy avoiding doublings m steps before the end,
as in [18, Algorithm 21].

4. We compute a change of theta-coordinates on the codomain E? x E'? to
obtain the product theta-structure and we retrieve F, (Appendix B.4).

In the following, we assume we are given the following inputs defined in
Section 5.3:

— The pOintS Panuanva;
— The integers Ny, No, gu, Tus Yu, G, Lo, Yo, € Obtained from a solution of
Eq. (11);

where (P,,Q,) and (P,,Q,) are images of a basis (P,Q) of E;[2¢72] via the
gu-isogeny ¢, : E1 — E, and the g, N1 Na-isogeny ¢, o @, o pp, : E1 — E,.
In the following, we denote ¢ := ege+2 (P, Q), so that ege+2(Py, Qy) = ¢9* and
€oe+2 (PU, Qv) = Cg”NlNQ.

B.2 The 2-dimensional part

When computing the gluing isogeny f; : E, X E, — A, we first convert the
Montgomery (z : z)-coordinates on F, X F, into product theta coordinates.
Let (Ry,S.) and (R,,S,) be basis of E,[4] and E,[4] respectively such that
x(S,) = z(S,) = —1 and e4(Ry, S,) = ea(Ry,S,) = ¢*°. By Appendix A.1,
we can then convert Montgomery (z : z)-coordinates on E,, and F, into level 2
theta coordinates associated to symmetric theta structures induced by (R, Sy)
and (R,, S, ) respectively. Then, the resulting product level 2 theta structure on
E, x B, is induced by the ¢?*-symplectic basis of (E, x E,)[4]:

930 = ((Ru?())v (07 Rv)’ (SU7O)’ (07 Sv))

However, %, is not adapted to f; in the sense of Appendix A.1, so we need
to find a (non-product) symplectic basis adapted to f; and to compute the
associated change of theta coordinates with Theorem A.1. We can then compute
the gluing isogeny f1 in level 2 theta coordinates using [20, Algorithm 8] and
generic isogenies fa,- -, fr, using [20, Algorithm 7].
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Consider the intermediate ¢2*-symplectic basis % of (E, x E,)[4], where:

B = (([2°]Py,0), (0, [2°]P,), ([2°7u) Qu: 0), (0, [2°7umi12]Qu)),

and 7y, Y, M1, 72 are inverses of g, g,, N1, N2 modulo 2¢%2 Given the expression
of the kernel of @ := f,, o--- o f; from Lemma B.1, we can easily express the
symplectic change of basis matrix My from % to [2™]%Bs, where % is a ¢
symplectic basis of (E, x E,)[2™2] adapted to @ (given by Lemma B.3). This
matrix M is described in Lemma B.4. We can also express the change of basis
from %, to $:

ay 0 ¢y, 0

0 a, 0 ¢

by 0dy O |’

0 b, 0d,
where [2°]P, = [a,] Ry + [bu]Su, [2°7u]Qu = [cu] Ru + [du]Su, [2°]P, = [ay] R, +
[b,]Sy and [2°7,]Qy = [cv] Ry + [dy]Sy. The change of basis from %, to [2™] %2
is then My := My - M7 to which we can directly apply Theorem A.1 to obtain
the desired change of theta coordinates.

Lemma B.3. We keep the notations from Appendiz B.1 and Lemma B.1. Let

C 1= €ge+1 (P, Q), Suv ‘= TuZy + YuYu, 5uv = ToYu — Tulvs M5 M25 Yus Yoy My Ouw be
inverses of N1, Na, Gu, Gu, U = gu (22 + y2), Suw modulo 2™F2 respectively. Then,
By = (J1, J2, K1, K2) given by:

Jr = (227" ] Qu, 0),  J2 := (0, 257 " e ne 0w Py)
K1 o= (27" Niu) Py, [2° " gusun Po),
KQ = ([2e—m(N1u + gugv,U/NQ(SZv)]Qu» [2e_mgus7“)]@”)

is a C2 " -symplectic basis of (E, x F,)[2™%2] adapted to & := fy, 0---0 fi :
E, x E, = A, i.e. such that ker(®) = ([4] K1, [4] K2).

Proof. By Lemma B.1, we have:
ker(®) = (([2°72 7" Nyl Py, 277" gusuo] ),
([2e+27leu]Qu7 [2e+27mgu5uv}Qv)>a

so that ker(®) = ([4]K1, [4] K3) because 2672742 =0 mod 2°72.
Besides, we clearly have

€om+2 (Jl, JQ) = €gm+2 (Jl, KQ) = 62m+2(J2, Kl) =1
and

eom+2 (K1, K2) = egm+2 (([2°7 " N1u] Py, [2°7 ™ guSuv] Py),

([267m(N1’LL + gugv/JN2512w)]qu [267"19"8“”]@”))
= Camea (25| Py [267]Qu) VMgt
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egmia (257 P, [267 ] Q)T

e—m R
= €ge+2 (PH’QU)Q Niuw(Niu+tgugopuN29s,,)

" €e+2 (Pva Qv)
(P, Q)2 " (guN1u(N1utguguuNadl,)+9u Ni Nags?,)

e—m 2 .2
2 9uSuv

= €9e+2
_ @“m(guNfuzquNayi(éiq,ﬁiv))
_ C2e*m(guNfu2+guN1stzﬁ(fﬁﬂi)(fﬁﬂf))

— <2e’mguuN1(uN1+vN2) —_ <2267m -1

Indeed, Eq. (11) implies that 2™ < |6,,| < 22 +y2 4+ 22 + 92 < u+v = O(2°/?),
so that m = O(e/2) and 22¢™™ =0 mod 2°"2. Finally,
egmt2 (J1, K1) = egme2 (([=2°7 "1 p7u)Qu, 0), ([2°7 " N1u] Py, [2°7 ™ guSun] Py))
= eget2 (qupu)f%:—m?]lpﬂ’u]\hu = eges2 (Pu»Qu)

= ez (PQ* o

ge—m

Yu

Yubu = (¢ ’

and

€om+2 (']2v KQ) = €om+2 ((Ov [267m7u7v7717720'uv]Pv)7
([2€_m(N1U + gugv,UfN2512w)]Qu7 [26_mgu5uv]Qv))
= eges2(P,, Qv)2E*’”wwumnzowgusuu
= eger2(P,Q)* "

ge—m
=¢

Ju N1 N2Yu Yo M1 N20uw Gu Suw

so (J1, Jo, K1, K>) is indeed a ¢* " -symplectic basis of (E, x E,)[2™*?]. O

Lemma B.4. The change of basis matriz from 9By to [2™]Bs is:

0 0 Nlu 0
M, = 0 YuYoMN20uw GuSuv 0
. —Tp 0 0 guNlu
0 0 0 gung1N2Suv

Proof. 1t follows immediately form Lemma B.3 and the fact that m > 1 so that
4162, O

B.3 The 4-dimensional gluing

Let H := Fy,0---0F) : E2xE? — A2 asin Lemma B.1. Since H = Diag(®, ®)oS
with S : (R, S1, Ra, S2) — (R1, Ra, S1,52), if we assume we have computed @
in Appendix B.2, we can evaluate H on any point. Images of H are expressed
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in product level 2 theta coordinates on A2, where the theta structure on 4,, is
associated to the ¢?*-symplectic basis of A,,[4] induced by @, and given by:

%o == ([Qm]QS(Jl), [Qm]é(JQ)’é(Kl)aé(K2))'

Hence, the product theta structure on A2, is induced by %y x %o, as defined in
Eq. (16).

In general, this basis is not adapted to F,41 : A,Qn — B. Such a basis is given
by:

1= ([2°1H(S1), -+, [2°TH(S4), 27" H (Th), - -+, [2°7 ™[ H(T4)),

where ¢ = (S1,---,84,T1,--+,Ty) is a (-symplectic basis of (E? x
E?)[2¢72] adapted to F. Applying Lemma A.1 to (z1,22,y1,y2) :=
(@6, (P),0), (0,00, (P)), ([m]es, (@), 0), (0, [m]pe, (Q))), we obtain:

St = ([=umze]Qu, [~ pmyu]Qu, 0,0),  S2 := ([umyu]Qu. [-pmzu]Qu,0,0),
Sz := (0,0, [vn2wy | Py, [vn2ys] Py), S := (0,0, [=vnoyy] Py, [Vn22,] Py ),
Ty := ([N124] Py, [IN1yu] Pu, [20] Py, [y0] Po),
Ty := ([=N1yu] P, [N120] Pu, [=y] Py, [20] Py),
T = ([(1 = 2°pm) 2] Qu, [(1 = 2°m1)yu)Qu, [ma]Qu, [mys] Qu),
Ty o= ([=(1 = 2°pm1)yul Qu, (1 = 2°pm1) 20| Qu, [ Y] Qu, [Mm@0]Qu),

where 1, v,11, 12 are inverses of u, v, N1, No modulo 2¢%2 respectively.

To compute Fj,11, we need to compute the symplectic change of basis from
6o X 6 to € and the associated change of theta coordinates. We can then apply
the algorithms from [18, § 4.3] to compute F},, 1 with level 2 theta coordinates.

Lemma B.5. The change of basis matriz from 6y X 6y to 61 is

JuTu —GuYu O 0 0 0 H2 M3
0 0 Azy =AYy 1Yy 1Ty 0 0

GuYu GuTu 0 0 0 0 —13 H2
0 0 )‘yv )\xv —H1Ty 1Yy 0 0

M3 = 5

0 0 0 0 UTy  — Yy 0 0
0 0 0 0 0 0 MTyYuOuv —MT Yo YuTuv
0 0 0 0 Ul Ty 0 0
0 0 0 0 0 0 MYvYuOuv MTyYuOuv

where X := Vgung15uv7 H1 = HgZQUSqulNQCSuv/Qm;

6’U/U
H = S GuOun (N1ugy + gowy Noduy) - and

6'[}4'[1
Hz = Q—mguduv(wau - gvyvN25uv)'
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Proof. We have:
(291H (1) = (([—2°pm ] Qu, 0), P([—2°pm1yu]Qu, 0))
= ([guxu]é([_Qenlu’Yu}Qua 0)7 [guyu]é([_zenlﬁﬂ/u]@m 0))
= ([guza][2"]@( 1), [guyu][27]2(J1))

[2°TH (S2) = (P([2°pmyu)Qu, 0), P([=2°pmzu]Qu, 0))
= ([=9uyu[2"]2(J1), [guza][2"]P(J1))

[2°1H(S3) = (2(0, [2°vm2, | ), 2(0, [2°vm2y,] Py))
= ([vagunglsuv]qs(Ov [QG’Yu’ananO'uv]Pv)7
(VY0 9ugo N15u0] (0, [2°Yurom1120un] Po))
= ([Az,][27]D(J2), [Ay,][27]@(J2))

(2°]H (S4) = (2(0, [-2vn2yn] P ), P(0, 2V | Py)
= ([F2]27]2(J2), [Azo][27]@(J2)).

We also have:
27 H(T1) = (P([2°7 ™ N1y | P,y 267" @0 | Py ), P([2°7 ™ N1yu ) Py [2°7 " Yo Po)) s
with:
D([2°7 " N1y Py, [2°7 @y | Py) = [u:vu]@([Qe ™ N1u] Py, [2°7™ guSun) Py)
P(0,[2°7™ (zy — pTuuSun) ] Po)
[uwu]q”(Kl) (0, [2°7 " uguYu (ToYu — Tulyo)| Py)
= [pzu]P(K1)

+ (1492 9o YuuvSuo N1 N2 D(0, [2°7 ™ Y Yo 11120 wn) Po)
= [11yu][2™]P(J2) + [pau|P(K1)
and:
B([2°7 " N1yu| P, 27"y Py) = [uy |O(K1)
(0, [2°7™ (Yo — MYuGuSuv)| Po)
[uyu]@’(Kl) (0, [-2 " uguru(ToYu — TuYu)| Po)
= [pyu|P(K7)
— (197 9 ubun$un N1 N2]D(0, [2°7 " vy 20w Po)
= —[2,][2"(J2) + [1yu]P(K1),
so that:

2MH(TY) = ([pyul2M2(2) + [pru] @(KL ), —[pea] 2719 (J2) + [y @(K1))
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And we also have
[2°7"H(Ty) = (P([—2°" " N1yu| Pu, [2°7"yo| P,), P([2°7 " N1y Py, [2°7 20| Py))
= ([mu][2™]2(2) — [pyu] (K1), [11y] [27]D(J2) + [p2u]P(K))
Similarly, we compute
[2¢7™H(T3) = (T3,1,T3,2),
with:

T3y := P([2°7" (1 — 2°pm) 2] Qus [2°7 "My Q)

= O([2°7 " wu]Qu, 2 M| Q)

= M2 0w ([2°7 ™ (N1U + gugoitN262, )| Qus [2°7 " Gusun] Qu)
+ D([2°7 " (2w — Mo YuTuw (N1 + GugotN262,))]Qu, 0)

= [MToYuOu] P(K?2)
+ Q([_Qeimauvnlauvﬂ(]\fl'&yu + gvvaZCSuv)]Qm O)

= [MToYuTu] P(K?2)
+ [OuvGuTuo (N Uy + Gy Noduy )| P([=2°7 11 f170] Qi 0)

= [p2][2"]2(J1) + [T Yuous | P(K2)

and:

T30 := O([2°7™ (1 — 2°um)Yul Qu, [2°7 "M yu]Qv)
= (12" yu]Qu, 27" myu|Qu)
= [MYoYu0uw]P(2°7 ™ (N1t + gugotN202,)]Qus [2°7 ™ Gusun] Qu)
+ D([2°7" (Yu — MY VuOuo (N1U + GuguptN2n,,)]Qu 0)
= [MYoVuTus|P(K2)
+ P([2°7 " Su M Cuw b (N1UTy, — Yo GuGoN20ws)|Qu, 0)
= [MYoVuTus|P(K2)
— [Ouvguun (N1UZw — GugoYo Nadu)|P([=2°7 " 01 117 Qu, 0)
= —[us]®(J1) + MY YuTu|P(K2),
so that:
27" H(T3) = ([p2][2™]2(J1) + T Yuou | P(K2),
— [u3][2"]P(J1) + [MmYoVuTuw] P(K2)).
Finally, we have
27" H(Ty) = (D([— (1 — 2° 1) yu] Qu, [=1190] Q)
P([(1 = 2°pm1) 20| Qu, [ 20]Qu)) = (=T5,2, T5,1)
= ([ua][2"1P(J1) = Yo YuOu] P(K2),
[

(2] [2™]P(J1) + [Ty YuTu|P(K2)).
This completes the proof. O
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B.4 The splitting and identification of the result curve E,

Once we have computed F : E2 x E2 — E? x E'? as a 2-isogeny chain, the
codomain we obtain does not have a product theta structure from which we can
obtain the theta null point of F,, using Eq. (17). The theta structure we obtain
is induced by the ¢?“-symplectic basis of (E? x E'?)[4] given by:

9, = ([26}F(Sl)7 7[26]F(S4)7F(T1)7 T 7F(T4))7

while a product theta structure of E2 x E'? is induced by the ¢%"-symplectic
basis 9y := (U1, -+ ,Uy, V1, -+, Vi), where:

Up = ([26]30% (P),0,0,0), Uz = (0’ [26]<pbk(P)vO7O)v
Us := (07 ,0, [QS]W © é(ka(P)a O)>7 Uy = (07 0, [2e]w © 5(07 Py, (P)))’
Vi= ([26771}90%(@)70’ 0, 0)7 Vo= (07 [26771]90%(@)70’ 0)5
V3 = (0707 [2e/~“/77%772]!p05(§06k(62)70))a Vzl = (0707 [263:“7”7%772]@05(07 Poy, (Q)))»

given by Lemma A.1, where 11, 12, i, v are modular inverse of N1, No, v, v modulo
4 respectively. By Lemma A.1, we also obtain the

Lemma B.6. The change of basis matriz from 21 to Dy is given by

00 O 0 -10 0 O

00 0 0 0-10 0
00wN, O 0 0 0 0
M, |00 0 wNa 00 0 0
7 l10-oNy, 0 0 0 0 O
01 0 —wN, 0 0 0 0
00 0 0 1 0 wnp O
00 0 0 0 1 0 v

Hence, using the matrix M, above, the non-product theta null point of
E2 x E' % and the change of coordinates formulas from [18, Theorem 12|, we
can compute the product theta null point of E2 x E’ 2 given by:

E2 E/2 ’ ’
(eil?ij,ig,u(0))i1,i2,i3,i4€Z/2Z = (95“ (0)'95“ (0)-0F (0)-6 (0))iy inis.isczy2z- (18)

We can extract the projective theta null point (a : b) := (65 (0) : 07=(0)) by
2 2 2 12
finding i3,74 € Z/2Z such that the 05 ;, (0) # 0 and set a := 055 5.5, (0) and
’2
b= HlEgij (0). This theta null point (a : b) gives 6 different possibilities for

the Montgomery coefficient A of
Eq: By? = 2% + A2? + z.

Those possibilities are presented in Proposition A.1. All of these possible coef-
ficients are not defined over F, as E, should. This removes 2 to 4 possibilities
out of 6.
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However, we still cannot distinguish E, from its quadratic twist i.e. identify
B from the theta null point (a : b). To circumvent this difficulty, we impose
B =1 (or any quadratic residue over F,) and require that 4-torsion points of
the form (1 : * : 1) are defined in E,(F,) i.e. that A+2 and A—2 are quadratic
residues over F,,. This lifts all ambiguity since a Montgomery curve is determined
by a point of 4-torsion.

In practice, to identify the right Montgomery coefficient A of E,, we pick a
4-torsion point T, € E,(F,), which does exist since E,, is defined over F,, as the
result of an ideal action on E (see the proof of Lemma 5.1). Since

F(T,,0,0,0) = ([xu]cpbk ° Pu(Tu),*),

and both ¢y, and ¢, are associated to ideal actions, the point Ty := [24]@p, ©
Pu(Ty,) is Fpy-rational. Because Ny = N(a) and g, = deg(¢,,) are odd and z,, can
be assumed to be odd (swapping x,, and y,, if necessary), Ty is also a point of
4-torsion. We can then compute several change of theta coordinates until T} is
mapped to one of the Fy-rational theta points (1 :0) or (0 : 1) that are mapped
to the desired F,-rational Montgomery points (—1 : 1) and (1 : 1) respectively.
Once this is done, we identify a Montgomery coefficient A from the new theta
null point, following Proposition A.1.

To lift (£1 : 1) in E4(F,) given by y* = 2® + Az? + x, we need A + 2
to be a quadratic residue over IF,,. If this is not the case, then F, is given by
—y? = 23+ Az? +x (in which (£1 : 1) is F)-rational). But there is an F,-rational
isomorphism (z,y) — (—z,y) from —y? = 23 + Ax® + 2 to y?> = 2° — A2? + 2 s0
we can change A into —A in this case.

In practice, on the Montgomery curve E,, we take T, the point with x-
coordinate z(T,) = 1. By the same reasoning as above, replacing A, by —A,
if necessary, we can assume that T, is rational. The level 2 theta null point we
obtain in the end for F, implicitly contains the xz-coordinate of the image of T,
so we do not even need to push the 4-torsion point T, explicitly.

C Relaxing the 8-good condition

This section outlines an approach to relax the 8-good condition of Section 4.1
to improve the probability of finding (u,v) such that isogenies of degree u and
v can be efficiently computed in dimension 2.

Instead of looking for a pair (u,v) of B-good integers, we search for (u,v)
such that u takes the form u = g, (ax? + by?) and v the form v = g, (az? + by?),
where X, Yu, Ty, Y» € N and gy, g,, a,b € N* are products of primes lying in 8.
Note that the B-good case is the case a = b = 1.

Before discussing the advantages and drawbacks of introducing additional
freedom through a and b, let us describe how the Kani diagram in dimension 4 for
computing E, (cf. Section 3.1 ) is reshaped by this change. In this construction,
we assume that 9 is a set of Elkies primes. As we shall see, this assumption is
crucial to ensure the well-definedness of our Kani diagram.
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We have uN(by) + vN(cx) = 2° where b = b.by and ¢ = c.c are ideals
equivalent to a with [by]- E1 = E, and [cx]- EF2 = E,. Additionally, u = g, (az? +
by?) and v = g, (ax? + by?) as defined above.

Using Elkies’ algorithm (cf. Section 3.2), we construct the following
(ax?, by?)-isogeny diamond and (ax?, by?)-isogeny diamond

zuapll)a ‘TvLP/2,a
Eipy—— FEia Eypy —— E9 a1
yWLbT Tyu@o,l,b va%bT Tva'z,b
TuPl,a TyP2,a
By Ei, Ey ——Fy,

where 91,4, 1 45 92,0, P5,, are isogenies of degree a and @1, ¢} 4, 2,6, P ;, are
isogenies of degree b. From this, we obtain an (az? + by?)-isogeny @, : E; X
Eiap — E14 X E1p and an (ax? + by?)-isogeny ®s : Eo X Ez 4 — Fa o X Eayp
explicitly given by the matrices

xucpl,a yuszj/Lb and xv@2,a yv(ﬁ/lb
“YuP1,b fﬂu@ﬁ,a —YouP2,b wv@é,a .

Then, we compute a g,-isogeny @, : F1, X E1p — A, and a g,-isogeny @, :
Eyq x Egp — A,, where A, and A, are each products of elliptic curves. This
can be achieved using Elkies’ algorithm to compute four isogenies ¥q v, Vb1, Va,v
and vy, such that ¢, : E1. = Ec, is an gy,-isogeny and 9., : B = E¢, is
an g,-isogeny, where ¢ € {a, b}. Hence, we obtain &4, and &, from the diagonal

matrices
wa,u 0 wa,v 0
( 0 /(/)b,u and 0 wb,v '

Let us denote by @, the g,(az? + by2)-isogeny Dy, o By : B4 X Ey 0 — Ay
and by &, the g,(az? + by2)-isogeny @,, 0 Py : Eo X Eg o — A,

To state the Kani diagram in dimension 4, it remains only to consider the
actions of by and c. Note that the key difference here is that by (resp. cx) acts
on By X Ey qp (resp. Ea X Eg4) rather than on E? (resp. E3). We denote by
Py, B X By gp = Eq x E3 and @, : Ey X Fy g — Eq X Ey4 the corresponding
N(b)-isogeny and N (cx)-isogeny. To ensure that this leads to a construction
similar to the B-good case, we now prove that F3 = Ej.

Thanks to the assumption on the primes in B being Elkies, we can express
Fs3 and E4 in terms of ideal actions. We have

Es = [by] - Erap = [0k Dp] - Er = [brloIpbe] - E

and
E4 = [Ck] . E2,ab = [Cklafb] . E2 = [Cklafbte] - F.

By commutativity and by construction of by and cg, we have

[6x1,Ipbe] = [I41pb] and [cxIoTpce] = [Io1pc].
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Moreover, since both b and ¢ are equivalent to a, we have that E3z = [I,I]- E4 =
E,. We denote by E’ the curve [I, ] - Ej.

Finally, using Lemma 2.2, there exist a g, (az2 +by2) N (¢ )-isogeny ¥ : A, —
A and a g,(az? + by?)N (by)-isogeny @ : A — A, such that oW = &, o 5% o

Dy, 0 P,,. Therefore, we have the following Kani-square

A kd A,
@UT
v Ey x Ey 4
-
Ay —2 By x By o E.x E'

By Lemma 2.3 and as g, (az? + by2) N1 + g, (az? + by2) Na = 2, this isogeny-
diamond leads to an 2¢-isogeny F : A, X A, — E4 x E' x A with kernel

ker(F) = {([gu(aa? + by2) N1](z), By 0 Be, 0 Py, 0 Dy (7)|z € Au[2°]}.
This kernel can also be expressed from points of Ey x Ej 45 as
ker(F) = {([N1]@u(P, Q), By © be, 0 P, (P, Q))|(P, Q) € Ey x Ey p[2]}.

From there, one can compute this 2%-isogeny F' using the same method as in
Section 3.1.

Assessment of the relaxation. We now investigate the benefits and draw-
backs of considering pairs (u,v) of such a form. First, the main additional
cost is the computation of the a-isogenies <p1,a,<P/1~a7<P2,a7<Pl2,a and b-isogenies
P1,bs P11 P2,0: o - Since half of them are simply pushforwards of the other
half, they can essentially be computed with two calls to the Elkies’ algorithm
for the a-isogenies and two calls for the b-isogenies. On the other hand, one may
expect that the probability of an integer being representable as ax? + by?, with
a,b € {1,2,3,5,7}, is at least three times greater than the probability of be-
ing representable by a sum of two squares. The table of experimental results in
Figure 1 supports this assumption.

Let us briefly explain why the set {2,3,5,7} is an interesting choice for B
regarding a, b.

We first focus on forms 22 +by? where b is prime. Our discussion relies mainly
on Proposition C.1 and on the fact that an integer whose prime factors are all
represented by such a quadratic form can itself be represented by this form.

Proposition C.1. [17, Corollary 2.6] Let b be an integer and p be an odd prime
such that ged(b, p) = 1. Then p is represented by a primitive form of discriminant
—4b if and only if its Legendre symbol (—=b/p) is equal to 1.
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Bit size 32 bits|64 bits|128 bits
Success rate when a,b € {1} 0.11 [0.08 |0.05
Success rate when a,b € {1,2,3,7} [0.31 |0.24 |0.18
Success rate when a,b € {1,2,3,5,7}0.33 |0.28 0.20

Fig. 1. Success rates for representing an integer as ax? 4 by?, with =,y € N, depending
on the possible values for a and b. Each rate is computed from 10,000 integers drawn
uniformly at random. Forms where a # 1 and b = 7 were not considered.

Note that the quadratic form 2 + by? has discriminant —4b. Hence, the best
choices for b to maximize the probability that primes are represented by 2 + by?
are those for which the class group of discriminant —4b has cardinality 1. Indeed,
by Proposition C.1, if (b/p) = 1, then p is represented by a primitive form of
discriminant 4b. When there is a unique class in this group, we have that 22 +by?
is equivalent to this primitive form. Therefore, z2 + by? also represents p.

Since an integer has a probability of one-half of being a quadratic residue
modulo a prime p, we expect that z? + by? represents p with probability
one-half. In addition, since the set of even discriminants of class number 1 is
—4,-8,—12,—16, —28, there are only 4 such forms interesting to us: =2 + g2,
x? 4+ 2y2, 22 + 3y? and 22 + 7y%. We cover all of them with the set of primes
{2,3,7}.

The second-best choices for b are those for which the corresponding class
group has cardinality 2, such as b = 5 and b = 13. The probability that a prime
is representable by 22 + by? is then halved for such b. However, from [17], we
have the following equivalences

p=a2+ 1> iff p=1 mod 4,
p =22 + 5y? iff p=1,9 mod 20,
p = a2+ 13y iff p=1,9,17,25,29,49 mod 52.

Hence, if p is represented by x2 + 5y or z? 4+ 1332, it is also represented by
22 4+ y2. Nevertheless, adding 5 to the list of prime factors gives access to the
forms 222 + 522, 22 + 1022 and so on. This explains why, in Fig. 1, adding 5
improves the probability of success.

Other experiments have shown that adding a quadratic form from a class
group with cardinality 3 or more, such as 22+ 1132, has only a negligible impact.
This is why, we did not consider forms az? + by? where a # 1 and b = 7, nor
forms where a or b are composite numbers. All these cases lead to class groups
of cardinality greater than 3. Additionally, the next prime after 13 that yields
a class group of cardinality 2 is 37. Therefore, to achieve the most significant
improvement with the smallest set of primes, it seems reasonable to consider
only primes up to 7.
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D Algorithms for working over [,

In this appendix, we give the necessary algorithms for working over IF),.

D.1 Fast sampling of a basis given by the eigenspaces

Let p =7 (mod 8), and let E/FF, be a supersingular elliptic curve on the surface,
i.e. oriented by Z[@]. Recall that for 2/ || (p + 1), we have

E(F,)2| =2/22 x 2/2' 712,

and that on E[2/71], the Frobenius has eigenvalues 1. Our goal is to efficiently
sample a basis (P, Q) = E[2/71], such that z(P),z(Q) € F,. To do this, we first
study the three non-trivial 2-torsion points on E. Denote them as follows:

— Tp is the point corresponding to the descending 2-isogeny, i.e. E/(Tp) is
primitively oriented by Z[/—p]

— T4 is the point corresponding to the horizontal 2-isogeny, such that there
does not exist a point T” € E(F),) satisfying [2]T" = T_;.

— T is the point corresponding to the horizontal 2-isogeny, such that there
does exist a point T € E(F),) satisfying [2]T" = T3.

Although these points could easily be distinguished by looking at their di-
vision points, we show that they can more efficiently be distinguished by their
Tate-pairings.

Lemma D.1. With the notation above, the (reduced) Tate-pairings are given as
follows:

—ero(T-1,T-1) =epo(T-1,Tp) = ero(T-1,Th) =1,
— er2(To,T-1) = er2(To, To) = —1 and er2(Ty, T1) = 1,
—era(Th,T-1) = er2(T1,To) = —1, and e o(Th,Th) = 1.

Proof. Recall (see e.g. [57, 61, Lemma 5]) that for T; and ¢, : E — E/(T;), we
have that er 2(T;, R) is 1 if there exists a rational point R’ such that g/b\i(R’) =R,
and —1 otherwise. The lemma can then be proved as follows:

Note first that we certainly have er (T}, 71) = 1, since there exists a point
T’ such that [2]T" = ¢; o ¢;(T") = Ty.

For Tp, the corresponding isogeny ¢ is descending, and hence the 27 -torsion
on E/(Tp) is cyclic. Thus, Ty is not in the rational image of ¢g, and since we
know that 6T,2(T0,T1) = 1, we get that GT,Q(T07TO) = €T72(T0,T_1) = —1.

For T_;, we have that ker((,zAS_l) = (¢1(T1)). Since f > 3, there are rational
points R’ € E/(T_1) (of order 4) satisfying ¢_1(R') = T}, and since E/(T_1)[2]
is IFp-rational, the other 2-torsion points are mapped to T_; and 7Tp. Hence
€T72(T_1,T'i) = 1 R

Finally, for Ty, we have that ker(¢1) = (¢1(T0)) = (¢1(T-1)). Since Ty and
T_; are both in E(F,)\[2]E(F), its clear that ep o(T1,To) = ero(Th,T-1) = —1.
(This also follows by the non degeneracy of the Tate pairing and the fact that
€T72<T1,T1) = 1) O
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Thus, given a curve and the three non-trivial 2-torsion points, we can by
Lemma D.1 easily detect which point corresponds to which index. Together
with the following lemma, this gives a particularily fast algorithm for sampling
a basis of the form that we want.

Lemma D.2. Let p =7 (mod 8), let
EJFy :y* = g(x)

be an elliptic curve with Endg, (E) = Z[*], and let f = vy(p+1), so that there
exists a point on E(F,) of exact order 27=1. Denote by Ty, T_1, Ty the three
non-trivial 2-torsion points, with the indexes as above. Let xp € F),. Then

— xp lifts to a point (zp,yp) = P € E(F,) with 2/~ | ord(P) if and only if
(zp —2(T-1)) € Fy \F;? and g(xp) € F}?,

— xp lifts to a point (zp,yp) = P € EY(F,) with 2/~1 | ord(P) if and only if
(zp —2(Th)) € F}? and g(zp) € Fy \ F}?,

where
E'[Fy, : by = g(x)

denotes a quadratic twist of E over F,,. (We remark that we can take b = —1
because —1 is not a square over Fy,.)

Proof. For the first part, note that it is obvious that P € E(F,) \ E[2] if and
only if g(zp) € F32. Further, let R € E(F,) be any element of exact order 2/~1.
We can write P = [u]R + [b]Ty + S with S in [2]E(F,). Now 2/~! divides the
order of P if and only if u is odd. The statement then follows from

er2(T-1,P) = ero(T-1, R)"ers(T-1,Tp)" = (—1)%,

where er2(T_1,R) = —1 by combining Lemma D.1 and the non-degeneracy of
the Tate pairing.

Next, write 7 : E — E* for any twisting isomorphism leaving z fixed, and
write T, T¢, Tf for the non-trivial 2-torsion points on E!, with indexes same
as before. The second part of the lemma then follows from the first after noting
that 7(T1) = T, and that for any 7%, # Q € E*(F,), the reduced Tate pairing

ea(Th,,Q) is given by the residue class of G ?;?);jgjjl))2)(oE) = (z(Q) —
z—z(Th, x

O

Note that this gives a particularly effective algorithm for sampling a basis of
the form we want.

Remark D.1 (Choosing a canonical representative for the Montgomery coeffi-
cient). Let E/F, be an elliptic curve. Recall (see e.g. [57, Example 5.12]) that
if T € E[2](F,), E can be put in a Montgomery form by? = 23 + Az? +z with T
sent to (0,0) if and only if there exists a rational cyclic group G C E[4] of order
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4 that contains T. Equivalently, T has trivial self Tate pairing. If that is the
case, there are always exactly two different such subgroups, which give the two
coefficients A, —A. As explained in Appendix B.4, since —1 is not a square over
Fp, then if b = —1, switching to —A allows us to always work with Montgomery
models with b = 1.

There are always 6 possible Montgomery models over Fp (two for each of the
three 2-torsion points). However, in our situation of E//F, on the surface, only T}
and T_; give a rational Montgomery model. Indeed, Ty induces the descending
isogeny to the floor, which cannot be extended further to a rational 4-isogeny.
Imposing the condition that b = 1, we only have two possible Montgomery
coefficients for our elliptic curves.

In our implementation, we pick a deterministic one based on the lexicographic
order. An alternative choice would be to (for instance) pick the choice that sends
T_1 to0 (0,0). A further optimisation would be to represent the Montgomery curve
not by the A coefficient, but by the z-coordinate « of Ty (for instance), from
which we recover A as —a—1/a. With this convention, we would be able to pick
up immediately the three points 71, Ty, T_1 without a square root computation.
For the class group action, since we first compute the theta coordinate of Ej,
which encodes all the 2-torsion on E,, we can easily output «, rather than A,.
Explicitly, if (a : b) is a rational theta null point on Ey, then aq = (b* —a?)/(a®+
b?) is the x-coordinate of Ty when FE, is put into the Montgomery form such
that the 2-torsion theta point (—a : b) (which has trivial self pairing, hence is
either Ty or T—1) is sent to (0: 1).

D.2 Evaluating endomorphisms with denominator

In this section, we show how to evaluate endomorphisms with denominator, by
using Tate-pairings instead of division points. We first give the general algorithm,
before noting that our situation is particularily simple.

Algorithm 4 EvalEndomorphismWithDenominator(«, P)

Input: o € Z[HT’T], where 7 denotes the g-power Frobenius endomorphism, a point
P € E(F,), where Endr, (E) = Z[*]

Output: a(P)

: Write o = %, with n of minimal denominator.

Compute a basis (T1,T2) = E[n].

Compute the pairings po = ew,n(T1,T2), u1 = ern(Th, P), p2 = er,n (T2, —P).

Compute r, s so that ug = pe and pg = p1.

Set T' = [r|T1 + [s]|T>.

return [b]T + [“2]P.

Proposition D.1. Algorithm / is correct, and returns a(P) without using di-
ViSton points.
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Proof. Since o — “TH’ = b”T*l, and QTH) € 7, we see that evaluating a(P) reduces
to some simple scalar multiplications and additions after evaluating ==X (P).
Notice that E[n] C E(F,), since m — 1 factors through multiplication by
n. Thus, we can sample a basis (T7,T>) = E[n] over F,. Let =1(P) = T.
We have that [n|T = (7 — 1)(T) = Og, since T € E(F,) = ker(r — 1),
thus T' can be written as T = [r]T1 + [s]T2 for some r,s. By the non-
degeneracy of the Weil-pairing, we can recover r, s by computing the evaluations

ewn(T1,T2), ewn(T1,T), ewn (T2, T). Finally, by [57, Equation 15], we have that
eW,n(T‘in) = eT,n(Tia P)v

which finishes the proof. O

In the CSIDH/CSURF supersingular case, the maximal denominator n that
can occur is n = 2, which is the situation we are in in Section 5.2. Further, we
only ever need to evaluate the endomorphisms in multiples of our chosen basis
points P, Q, where P, (Q are points of order 27! for 27 || p+ 1

Notice that in this case, the algorithm becomes particularly easy; assuming
we aim to compute a(R) for a = %’rb, we are in one of two situations:

— If R =[m|P or R = [m|Q for some m =0 (mod 2), we see that the pairings
p1 = p2 = 1, and hence a(R) = [“2]R.

— If R=[m]P or R = [m]Q for some m =1 (mod 2), =+ (R) is instead given
by the unique 2-torsion point T; with e o(T;, R) = 1. But we already know
that er2(T-1,P) = er2(Th,Q) = —1 by Lemma D.2, hence we see that a
single Legendre test is enough to determine the correct T;.

2
YT_y) = Ty on E, and T3 (Ty) = 52 (T1) = T1 on E'. If we sample P

above Ty, then if er (T, P) = 1, Z71(P) = Ty, whereas if er»(Ty, P) = —1,
—L(P)=T;.

Ezample D.1. We of course have Z52(Ty) = 0, and by Lemma D.2, =1 (Tp) =
(

Further, since translating by T' € E[2] is still well defined on the Kummer
line £/ + 1, we see that evaluating our endomorphisms essentially only consists
of a single scalar multiplication, and potentially a translation by 7;, which can
all be done on the Kummer line.

Remark D.2. We can further refine our basis sampling to always output points
such that er 2(Ty, P) = er2(Tp, Q) = 1. By the discussion above, in this case we
will always know that the potential translation by T; is by T; = Tj. Sampling
such a basis is easy to do using Lemma D.2: we want that zp — 2(Tp) is a
square, i.e. rp = z(Tp) + u?, and since @ is on the twist, that xg — z(7p) is not
a square, i.e. o = x(Tp) — u?. Then by the non degeneracy of the Tate pairing,
we have epo(T_1, P) = —1 and er 2 (T, Q) = —1, so by bilinearity we also have
€T’2<T1,P) = —1 and eT’Q(Tfl’Q) =—1.
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D.3 Using the bottom of the volcano

We describe an alternative strategy to sample a basis on E by using the de-
scending isogeny ¢, : E — Ey. Recall that Tj is the unique 2-torsion point on
FE with non trivial self Tate pairing.

On Ejp, we are at the bottom of the 2-isogeny volcano, so the 2-Sylow is cyclic,
generated by a rational point Py of order 2/. The image of P, by oT, is then
a point P of order 27~1 on E. By construction of P, we have er2(To, P) =1,
while ep o(T_1, P) = er2(T1, P) = —1 because P is of full order on E.

Doing the same construction on Ef, we get a point Q = <$TO (Qo) € EY,
and (P, Q) is an appropriate basis (as in Remark D.2) to which to apply the
evaluation algorithm of Appendix D.2.

We saw on Remark D.1 that there are 4 possible choices of Montgomery
coefficient for E (or 2 if we restrict to b = 1). Also, because the 2-torsion is
rational on F, then A 4+ 2 being a square is equivalent to A — 2 being a square,
in which case (1 : 1) and (-1 : 1) lift to a rational point of 4-torsion on E :
y? = 2% + Ax? + . In the other case, then —A + 2 and —A — 2 are squares, and
(1:1),(—1:1) lift to E* : y?> = 2% — Az® + .

By contrast, on Ey, there is only one rational point of 2-torsion T} (which
generates the kernel of QZTO), which has trivial self Tate pairing, so we can find
a Montgomery form for Ey with T} sent to (0,0). Then Ej is isomorphic to
by? = 23 + Agz? + z, and replacing Ay with —Ag if necessary, we can assume
b = 1. In particular, there is only one choice for Ag to put Eg in Montgomery
form Ej : y*> = 2% + Agx? 4+ z. Furthermore, either Ag + 2 is a square (so (1,1)
lifts to Ep) and then Ag — 2 is not a square (so (—1,1) does not lift), so —Ag + 2
is a square and —Ag — 2 is not a square. Conversely, Ay + 2 not being a square
is equivalent to Ay — 2 being a square, —Agy + 2 not a square, —Ag — 2 a square.

We see that Ag gives a convenient way to represent not only Ejy, but also E:
we have Ty = (0,0), ¢7; the canonical ascending isogeny Ey — E, whose dual
o1, has kernel generated by T, and also that if Ag+2 is a square then the image
of (1:1) by ¢r; gives T, and the image of (—1: 1) gives T (and conversely if
Ap + 2 is not a square).

A last advantage is that we can efficiently sample Py € Ey(F,), Qo € E*(F,)
of full order 2/ by adapting the entangled basis algorithm of [66]. We first sample
z(Py) a non square in F, of the form —Ag/(1 —u?) until we find that z(P) lifts
to a rational point Py on Ejy. Since the Tate pairing of Tj) with Py is non trivial
by construction, Py, multiplied by the cofactor, has exact order 2. Now set
2(Qo) = —Ag — 2(Py) = —u?x(Py). Then z(Qo) is a square, and z(Qo)? +
Ao (Qo) + 2(Qo) = z(Py)? + Aoz(Py) + 2(Py) = y(Py)?/z(Py) is not a square.
So 2(Qo) lifts to a point on the twist —y? = 23+ Agx? +z, with y(Qo) = uy(P).
And the non reduced Tate pairing of T} and Q) is given by the class of —z(Qy),
which is not trivial. Hence @, multiplied by the cofactor, also has exact order
2/ on E*. We can precompute a table of elements such that —1/(1 — u?) is not
a square and another table of elements such that —1/(1 — u?) is a square. Then
for the entangled basis generation, depending on whether A is a square or not,
we use the first or the second table.
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Remark D.3 (The horizontal isogenies of degree 2/=1). On E, which is at the
crater, the ideal (2) splits as (2) = p1p_1. We have 2/ | 72 — 1, and p/ 'p_, |
=1 p w1

Let (Py, Qo) be our basis sampled on Ej as above, P = ggTo (Py),Q = qASTO (Qo)
the points of order 2/~ on E. Then since T}, has non trivial pairing with P,
then by [57, Example 5.16], the isogeny generated by Py lands on the bottom
of the volcano, hence (P) is not the kernel of the isogeny associated to p{ _1, as
can also be seen from the fact that it has non trivial pairing with T;. However,
if PP=P+T_4or P =P+ Ty, then ers(Th,P’) =1 by Lemma D.1, and so
(P') is the kernel of p{fl. A similar argument shows that E[p{]l] =(Q + Tp).

Remark D.4 (The 2-isogenies between E and Ey). As illustrated above, it is
convenient to use the 2-isogenies ¢, and ¢7 to move between E and Ey. We
also would like to have F in Montgomery form, and Ej too for the entangled basis
generation. To put a curve F in Montgomery form, we need the z-coordinate
of a point of 4-torsion 7" € E such that z(T”) € F,. In particular, if we start
with Ey in Montgomery form, and take the quotient by T}, we easily find E in
Legendre form (see for instance [59, Example B.1]), but finding a Montgomery
form for E requires either a square root or to push the 8-torsion point 273 P,
(or 2¢73Qy) to E via b1y

On the other hand, if we start from F in Montgomery form and we are given
a = z(Tp), then we can directly find Ey in Montgomery form using the formulas
from [52, Proposition 2]. Hence it may be useful to use a to represent E (or even
use the level 2 theta null point), as already suggested in Remark D.1, to save a
square root.

E Parameter choices

In this section we give more details about the choice of the set of primes to
include in 8. Clearly, adding more primes to B improves the time of Step 1 by
making the values of N7 and N in Equation (11) smaller. On the other hand, we
are on average required to compute more and isogenies of larger degree in Step
2. If we start from a very small set of primes, say B = {2, 3}, and keep adding
the smallest possible prime to this set, we hence expect the time of Step 1 to
decrease, up to a point where most expensive operations are eventually checking
the validity of a u,v pair instead of finding one. Since on average we need to
check a constant number of pairs u,v, at some point adding primes to 98 will
not improve Step 1, while still slowing down Step 2. This is exactly what we
observe in Figure 2, where we compare the times for different choices of 9% in
the 500 parameter set. In each different column, all the (Elkies) primes up to
the last prime reported are included in B. It is then clear that the best choice
is B ={2,3,7,11,13}. Adding 29 or bigger primes has essentially no impact on
Step 1, while negatively affecting Step 2. Similar experiments were performed
for all security levels, and the results in Table 1 were derived accordingly.
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Step time vs prime choice - p500

Step
. tl
2.0 v
1.5
]
E
E
1.0
0.5 .
0o l = =
7 11 13 29

Last prime

Fig. 2. Time in seconds for Steps 1 and 2 for different choices of B in the 500 parameter
set.

°
0441 o ° °
. : |
i °
0.3 -
1ot
) [ ]
o e °® o
°
0.2 ’ o® o H ° :
’ 'Y | L ! ° o e 9
[a] ;. ® .=
°e 6 e §
0.1 A
.!
5]
ee o
0.0_ 7T 7T LI T LI T L T
357 1113 1719 23 2931 37 4143 47

Fig. 3. Success rates of Step 1 for different choices of %B.

A more detailed analysis is shown in Figure 3. Looking again at the 500
parameter set, on the z axis we have the last prime included in B, but this
time including also non-Elkies primes. So for instance the column 7 corresponds
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to B = {2,3,5,7}, while in Figure 2 it corresponds to B = {2,3,7}, 5 being
non-FElkies. Every dot represents a random ideal passed to Step 1; cyan dots
correspond to successful runs, while gray dots correspond to failures. For each
dot, the y axis indicates the time taken to run Step 1. The green and red dots
show the average time for the given set, where green means that the denoted
prime is Elkies, and red that it is non-Elkies. Here we see that adding non-Elkies
primes to B does not help significantly, since they cannot appear as factors in
the ideals. Moreover, as already discussed, they would significantly slow down
Step 2 forcing us to work over extension fields.
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