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Abstract. In this paper, we present the first practical algorithm to
compute an effective group action of the class group of any imaginary
quadratic order O on a set of supersingular elliptic curves primitively
oriented by O. Effective means that we can act with any element of the
class group directly, and are not restricted to acting by products of ideals
of small norm, as for instance in CSIDH. Such restricted effective group
actions often hamper cryptographic constructions, e.g. in signature or
MPC protocols.
Our algorithm is a refinement of the Clapoti approach by Page and
Robert, and uses 4-dimensional isogenies. As such, it runs in polyno-
mial time, does not require the computation of the structure of the class
group, nor expensive lattice reductions, and our techniques allow it to
be instantiated with the orientation given by the Frobenius endomor-
phism. This makes the algorithm practical even at security levels as high
as CSIDH-4096. Our implementation in SageMath takes 1.5s to com-
pute a group action at the CSIDH-512 security level, 21s at CSIDH-2048
level and around 2 minutes at the CSIDH-4096 level. This marks the
first instantiation of an effective cryptographic group action at such high
security levels. For comparison, the recent KLaPoTi approach requires
around 200s at the CSIDH-512 level in SageMath and 2s in Rust.

1 Introduction

The simplicity and flexibility of the Diffie-Hellman key-agreement protocol [26]
has made it ideally suited to create more advanced protocols, such as public-
key encryption [29], digital signatures [62], password-authenticated key exchange
[36], threshold encryption [25], threshold signatures [35, 34], updatable encryp-
tion [10] and many more. These protocols are all based on the computational
efficiency and commutativity of group exponentiation, combined with the com-
putational hardness of the discrete logarithm problem.
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Due to Shor’s algorithm [63], the discrete logarithm problem is not quantum
hard. To construct a post-quantum analogue of the Diffie-Hellman protocol,
we need to remove the underlying group structure. One way to achieve this is
to use a commutative group action instead. The vectorisation and parallelisa-
tion problems, which are analogues of the discrete-logarithm and computational
Diffie-Hellman problems respectively, are assumed to be (superpolynomially, but
sub-exponentially [39]) hard, even for quantum computers. Furthermore, both
problems are equivalently hard for quantum computers [32, 42, 33]. Using group
actions, it is possible to construct post-quantum analogues of the advanced pro-
tocols given above: public-key encryption [43], digital signatures [7], password-
authenticated key-exchange [1], threshold encryption and signatures [24] and
updatable encryption [40].

A group action is said to be effective (EGA) if, amongst other conditions, the
action can be computed in polynomial time [2]. That is, if G acts on X, we have
a polynomial-time algorithm that computes gx for any g in G and x in X. If we
only have a polynomial-time algorithm that can compute gix for {g1, . . . , gn}, a
set of (polynomially many) generators of G, the action is said to be a restricted
effective group action (REGA).

The most prominent instantiation of a REGA is given by the action of the
class group of an imaginary quadratic order on a certain set of oriented elliptic
curves, with the CSIDH protocol [13] (or its variant CSURF [12]) being the most
efficient. In CSIDH, the orientation is given by the Frobenius endomorphism, and
the set of oriented curves simply consists of the supersingular curves defined over
Fp, up to Fp-isomorphism. Since we can only efficiently evaluate the action of
ideals of smooth norm, CSIDH is indeed a REGA and not an EGA. This often
results in difficulties in constructing post-quantum variants of protocols based
on Diffie-Hellman: many of the previously mentioned examples really require an
EGA, while other examples, such as the signature scheme SeaSign [22], resort to
some form of rejection sampling to not leak information about the secret (as a
workaround for being a REGA).

A three step approach to turn a REGA into an EGA was given by the sig-
nature scheme CSI-FiSh [7]: the first step computes the structure of the class
group (which can be done in quantum polynomial time, but classically takes
subexponential time), the second step computes a (very) short basis of the rela-
tion lattice (which takes exponential time, even quantumly) and the third step
expresses any element as a product of the generators with small exponents, us-
ing the short basis. Step 1 has been done in practice for CSIDH-512, but further
research [6, 9, 51] concludes that using a 512 bit prime for CSIDH does not
achieve NIST level 1 security, with the latter two sources claiming that primes
of more than 2000 bits are required. Since the computation of the class group
is infeasible for such large primes, the primitive SCALLOP [21] and improve-
ments [14, 3] avoided such computation by using a (large prime conductor)
suborder of an order with small discriminant, so that the class group structure
comes for free. This approach however does not fundamentally solve steps 2 and
3 (see https://yx7.cc/blah/2023-04-14.html for an informal, but detailed
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discussion of this issue), and the highest level achieved in [3] is equivalent to
CSIDH-1536, for which a single group action takes almost 12 minutes using a
C++ implementation. This approach is therefore completely hopeless to instan-
tiate practical effective group actions at higher security levels (even using a
quantum computer).

Our contributions. We describe a practical algorithm to compute the group
action of any element in the class group of an imaginary quadratic order O on a
set of supersingular elliptic curves over Fp primitively oriented by O. Our algo-
rithm works for all orders of discriminant ∆O all the way up to |∆O| ≈ p and in
particular, applies in the CSIDH/CSURF setting, where the orientation is given
by Frobenius, and we have ∆O = −p or ∆O = −4p. As such, we obtain the first
EGA at security levels equivalent to CSIDH-2048 and CSIDH-4096. We imple-
ment the algorithm in SageMath, and show that it achieves a highly practical
runtime, which scales well to higher security levels. Not only does our algorithm
allow us to easily instantiate security levels far beyond what previous EGA
instantiations were able to; the timings of our proof-of-concept SageMath imple-
mentation also outperform all other EGA instantiations (even compared to their
highly optimized C++/Rust implementations) at corresponding security levels.
Our implementation is publicly available at https://github.com/pegasis4d.

Technical overview. Our work is based on the Clapoti framework [49], and
proceeds by embedding the isogeny we wish to evaluate in an isogeny in dimen-
sion 4. In order to evaluate the action given by the ideal a ⊆ O on an elliptic
curve E using only one 4-dimensional 2e-isogeny, the Clapoti framework requires
finding two other integral ideals b, c equivalent to a such that

uN(b) + vN(c) = 2e, (1)

with the restriction that u, v are integers that can be written as the sum of two
squares (in particular, they must be easy to factorise), and where 2e < p (or
more accurately, the full torsion group E[2e] should be defined over Fp2k for a
small k).

Several issues arise when trying to solve the above equation for |∆O| ≈ p:
even without the restriction on u and v being sums of squares, sometimes the
equation simply has no solution. Indeed, since the smallest ideals equivalent to
a are already expected to have norm around

√
p, and a solution is guaranteed

to exist only when N(b)N(c) < 2e, this contradicts the requirement 2e < p.
As such, imposing the extra condition for both u and v to be sums of squares
further lowers the probability of finding a solution.

The main insight is that we can derive a related equation which is much
easier to solve by exploiting the fact we can always efficiently compute small
degree isogenies. We use this insight in two ways: first, we write b = bkbe and
c = ckce where be and ce are ideals of smooth norm and compute the isogenies
φbe : E → E1 and φce : E → E2, simply using Elkies’ algorithm [30] or Vélu’s

https://github.com/pegasis4d
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algorithm [64]. We can then apply the Clapoti framework to E1 ×E2 instead of
E × E, resulting in the equation

uN(bk) + vN(ck) = 2e,

where now the product N(bk)N(ck) is typically much smaller than 2e since we
have removed the norms of the ideals be and ce.

Second, we use the same insight to relax the conditions on u and v: instead
of requiring that each can be written as a sum of squares, we again allow to take
out smooth factors gu and gv such that u = gu(x

2
u+y

2
u) and v = gv(x

2
v+y

2
v). Note

that integers containing prime factors (to an odd power) which are 3 mod 4 can
never be written as a sum of squares, so allowing factors like 3, 7, 11, 19, . . . to
be taken out of u and v drastically increases the probability that both u/gu and
v/gv are sums of squares. Applying the above, allows us to solve the (relaxed)
norm equation efficiently, even at the highest security levels.

With u and v of this form, we are able to efficiently construct a 2-dimensional
u-isogeny Φu : E2

1 → E2
u and a 2-dimensional v-isogeny Φv : E2

2 → E2
v . We then

compute a 4-dimensional 2e-isogeny F : E2
u×E2

v → E2
a ×E′2 that “embeds” Φu,

Φv, φbk
: E1 → Ea and φck : E2 → Ea, where Ea := a · E. Using level-2 theta

coordinates as in [18], the computation of F is relatively fast. We finally extract
the resulting curve Ea from the codomain of F . For very high security levels,
we remark that it is helpful to relax the conditions on u, v and allow them to be
arbitrary positive integers, at the cost of using more dimension-4 isogenies (see
Sections 4.2 and 6.4).

Comparison with related work. We briefly compare our algorithm with
2 related works: the original Clapoti framework [49] and the recent KLaPoTi
algorithm [50] that relies on KLPT.
Clapoti: As described above our work is based on the Clapoti framework [49],
which presents the first polynomial time algorithm to act with a random ideal
a ⊆ O by finding two integral ideals b, c equivalent to a such that

uN(b) + vN(c) =M . (2)

For a provably polynomial time algorithm, M has to be chosen powersmooth,
but in order to achieve a practical algorithm, one really is limited to M = 2e

where the 2e-torsion is easily accessible, in particular, 2e < p. However, the
expected number of solutions is 2e/N(b)N(c) where N(b), N(c) are roughly

√
p

and thus if p + 1 = f2e even for small f , this equation simply will not have
a solution. To illustrate this: for the 4000-bit parameter set, directly applying
Clapoti will fail in 97% of the cases when M = 2e < p, and this is without the
restriction on u and v being sums of squares. If one adds this restriction on u
and v, the probability to find a solution is close to 0 since the probability that
a pair (u, v) each of size

√
p is a sum of squares is proportional to 1/ log(p).

Furthermore, note that it is impossible to test all pairs (u, v) since this would
involve factorisation, even further lowering the probability by another 2 to 3
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orders of magnitude depending on the size of p. In conclusion: running Clapoti
with M = 2e < p will almost always fail, and thus is not a practically efficient
algorithm.
KLaPoti: A recent paper by Panny, Petit and Stopar [50] has also instantiated a
primitive KLaPoTi based on Clapoti. KLaPoTi differs from PEGASIS in several
aspects. The main ones are the way Equation (1) is solved, the dimension of
the isogeny used in the evaluation of the group action and the size of the base
prime p. KLaPoTi relies on the KLPT algorithm [38] to solve Equation (1), which
now requires u, v to be perfect squares. The fact that u and v are perfect squares
allows to perform the group action computation using dimension-2 isogenies only.
Nevertheless, the relatively large size of the solution obtained by this KLPT
approach requires |∆|3 < 2e where ∆ is the discriminant of the order O. This
implies that KLaPoTi uses a base prime p whose bitsize is 3 times larger than the
one used in CSIDH and PEGASIS, and uses an order O of discriminant ∆ with
|∆|3 < 2e < p. This highly affects the performance and the key sizes in KLaPoTi.
Even though PEGASIS performs the group action using 4-dimensional isogenies,
the fact that |∆| ≈ 2e ≈ p in PEGASIS enables a group action computation
which is more efficient. For example, to achieve similar security to CSIDH-512,
KLaPoTi uses a prime p of 1536 bits and a single group action computation
takes approximately 3 minutes [50, Section 7.1] in SageMath, while PEGASIS
uses a prime of about 512 bits and a single group action computation takes
approximately 1.5 seconds.

Organisation of paper. The rest of the paper is organized as follows. In Sec-
tion 2 we recall the necessary background material. In Section 3 we describe our
whole algorithm for general orientations. In Section 4, we detail an important
subroutine, namely how to compute an isogeny of prescribed degree in dimen-
sion 2, before we in Section 5 specialise our algorithm for the CSIDH orientation.
Finally, in Section 6 we detail some implementation choices before we present
our timings.
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under grant ANR-22-PNCQ-0002 (HQI); by SNSF Consolidator Grant Crypto-
nIs 213766. R. Invernizzi is funded by Research Foundation - Flanders (FWO)
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2 Preliminaries

For a general introduction to isogenies, especially in the context of cryptography,
we refer the reader to [31].
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2.1 Isogeny class-group action on oriented curves

Classic results [65, Th. 4.5] tell us that the class-group Cl(O) of an imaginary
quadratic order O acts freely and transitively on the set Ordq(O) of ordinary
elliptic curves E/Fq with endomorphism ring End(E) ∼= O. In [15], generalising
the work of [13, 12], Colò and Kohel introduced the framework for a similar
action, in which Cl(O) acts on a set of supersingular elliptic curves E which
contain O as a subring of End(E). We briefly recount this general construction,
together with results from [48].

Let O = Z[α] be an imaginary quadratic order and E/Fpn an elliptic curve.
We call an injective morphism of rings ι : O ↪−→ End(E) an O-orientation and
say it is primitive if ι(α) = ω is a primitive element of End(E) viewed as a
lattice, i.e. ω does not factor through a (non-trivial) scalar multiplication. We
call the pair (E, ι) a (primitively) O-oriented elliptic curve.

Let (E, ι) be primitively O-oriented and a an integral invertible ideal of O
with norm coprime to p. Let φa : E → Ea be the isogeny with kernel

E[a] =
⋂
σ∈a

ker(ι(σ))

and degree N(a). Now consider the map O → End(Ea) : γ 7→ φaι(γ)φ̂a. It
is an injective morphism of additive groups, but sends 1 7→ [deg(φa)] and
so is not a morphism of rings. We fix this by first noting that φaι(γ)φ̂a al-
ways factors through [deg(φa)] and then defining (φa)∗(ι) as the map given
by (φa)∗(ι)(γ) = φaι(γ)φ̂a/[deg(φa)] to obtain a morphism of rings and thus a
well-defined O-orientation. Indeed, by diagram-chasing one verifies that ker(φa)
is invariant under ω = ι(α), demonstrating that φaι(γ)φ̂a(E[deg(φa)]) = {0} for
all γ in Z[α], and that φaι(γ)φ̂a factors through [deg(φa)]. In fact, (φa)∗(ι) is a
primitive orientation [48, Prop. 3.5].

We say that the isogenies φa : (E, ι) → (Ea, (φa)∗(ι)) are O-oriented. Like-
wise, an isomorphism φ : E ∼→ E′ is called an O-isomorphism (E, ι) → (E′, ι′)
if ι′ = φ∗(ι) := (γ 7→ φι(γ)φ̂). Using this terminology, we define SSprpn(O) to be
the O-isomorphism classes of primitively O-oriented supersingular elliptic curves
defined over Fpn . This set is non-empty if and only if p is not split in K = O⊗ZQ
and does not divide the conductor of O in OK [48, Prop. 3.2].

We note that every class [a] in the class-group Cl(O) is represented by an
invertible integral ideal b with norm N(b) coprime to p [17, Cor. 7.17]. Moreover,
it is clear that principal ideals γO correspond to endomorphisms φγO = ι(γ).
Now the map

Cl(O)× SSprp (O) → SSprp (O) [a], (E, ι) 7→ a · (E, ι) := (Ea, (φa)∗(ι))

is well-defined; and when SSprp (O) is non-empty, the action is free with at most
two orbits [48, Prop. 3.3, Th. 3.4]. Restricting to one of these orbits, we obtain
a free and transitive group action.

The vectorisation problem of this action - given (E, ι), (E′, ι′) compute [a]
such that a · (E, ι) = (E′, ι′) - is thought to be quantum resistant. This property
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led to several cryptographic constructions based on ideal class group actions [13,
15, 21, 14] which define (restricted) effective group actions, as mentioned in Sec-
tion 1. The first one to be introduced was CSIDH (Commutative Supersingular
Isogeny Diffie-Hellman)8 [13] where O = Z[

√
−p] and the orientation induces an

isomorphism O ∼→ EndFp
(O), mapping

√
−p to the Frobenius endomorphism of

(x, y) 7→ (xp, yp) for all E ∈ SSprp (O). Even though these schemes are thought
to be quantum resistant, the best known quantum attack against the underly-
ing vectorisation problem is a subexponential algorithm due to Kuperberg [39].
For that reason, there is an uncertainty on the parameters required to ensure a
sufficient security level for CSIDH (and other class group action schemes). As
mentioned in Section 1, conservative sources [6, 9, 51] estimate that a 2000 bit
prime p is required to ensure a NIST-1 security level for CSIDH.

2.2 Polarised isogenies between abelian varieties

Every abelian variety A has a dual Â of the same dimension and every isogeny
φ : A→ B has a dual φ̂ : B̂ → Â of the same degree. If there exists a special kind
of isogeny λA : A→ Â called a polarisation, we say (A, λA) is a polarised abelian
variety (PAV). When λA is an isomorphism, we say it is a principal polarisation
and call A a principally polarised abelian variety (PPAV). Elliptic curves are
exactly the 1-dimensional PPAVs; they are canonically principally polarised.

Definition 2.1 (Polarised Isogenies). Let φ : (A, λA) → (B, λB) be an isogeny
between PAVs. If there exists an integer d such that φ̂λBφ = [d]λA, we say that φ
is (λA, λB)-polarised with polarised degree degp(φ) = d. When A,B are PPAVs

we define the polarised dual of φ to be φ̃ = λ−1
A φ̂λB : (B, λB) → (A, λA). Then

φ is (λA, λB)-polarised with degree d if φ̃φ = [d] in End(A).

(λA, λB)-polarised isogenies of polarised degree d are characterised by an
isotropy condition of their kernel.

Lemma 2.1. Let φ : (A, λA) → (B, λB) be a (λA, λB)-polarised isogeny with po-
larised degree d such that p ∤ d and let g := dim(A). Then ker(φ) is a subgroup of
cardinality dg of A[d], isotropic with respect to the Weil pairing e[d]λA associated

to the polarisation [d]λA : A→ Â (as defined in [41, p. 135]).
Conversely, if A is a PPAV of dimension g and φ : A → B has kernel

ker(φ) ⊆ A[d] of cardinality dg and isotropic for e[d]λA , then there exists a unique
principal polarisation λB on B such that φ : A → B is a (λA, λB)-polarised
isogeny with polarised degree d.

Proof. Suppose that φ is a (λA, λB)-polarised isogeny with polarised degree d.
Let x, y ∈ ker(φ) and y′ ∈ B such that y = φ̃(y′) (which exists by surjectivity

8 Note that CSIDH is based on the CRS protocol [16, 60], which uses the full en-
domorphism ring of an ordinary curve instead of an orientation of a supersingular
curve
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of φ̃ and belongs to B[d] since φ ◦ φ̃ = [d]). Then, by the definition of e[d]λA and
the usual properties of the Weil pairing [41, Lemma 16.2],

e[d]λA(x, y) = ed(x, λA(y)) = ed(x, λA ◦ φ̃(y′)) = ed(x, φ̂ ◦ λB(y′))
= ed(φ(x), λB(y

′)) = 1,

since φ(x) = 0. This proves that ker(φ) is isotropic.
Conversely, suppose that ker(φ) ⊆ A[d] of cardinality dg and isotropic for

e[d]λA . Then [41, Proposition 16.8] ensures the existence of a polarisation λB on
B such that φ̂ ◦ λB ◦ φ = [d]λA. Since deg(φ̂) = deg(φ) = | ker(φ)| = dg and
deg([d]) = d2g, it follows that deg(λB) = deg(λA) = 1 by multiplicativity of the
degrees so λB is a principal polarisation. This completes the proof.

For brevity, we will drop mention of the polarisations when they are clear
from context, and say d-isogeny to mean an isogeny with polarised degree d. In
particular, it is implicit that the corresponding polarisation to a PAV denoted
A is λA. Between elliptic curves, the principal polarisation being canonical, the
dual φ̂ and polarised dual φ̃ of an isogeny can be identified and will both be
denoted by φ̂; and the notions of degree and polarised degree are also the same.

We recall a standard result about factoring isogenies between PPAVs, which
we will need to recall the Clapoti construction in the more general context of
[49, Remark 2.10].

Lemma 2.2 (Factoring Isogenies between PPAVs). Let A,B be PPAVs
defined over a field k and φ : A → B be a d-isogeny between them. For every
pair of positive coprime integers d1, d2 each being coprime to char(k) satisfying
d1d2 = d, there exists a PPAV C, a d1-isogeny φ1 : A → C and a d2-isogeny
φ2 : C → B, each uniquely defined up to isomorphism, such that φ = φ2 ◦ φ1.

Proof. Since d1 and d2 are coprime, we have ker(φ) = ker(φ)[d1] ⊕ ker(φ)[d2]
with | ker(φ)[di]| = dgi for i ∈ {1, 2}. Consider the isogeny φ1 : A → C of kernel
ker(φ)[d1] and φ2 : C → B′ the isogeny of kernel φ1(ker(φ)). Then by con-
struction ker(φ2 ◦ φ1) = ker(φ) so φ2 ◦ φ1 = φ up to postcomposition with an
isomorphism B ∼→ B′ by [45, Theorem 4, p. 74].

Since φ is a d-isogeny, Lemma 2.1 ensures that ker(φ) ⊆ A[d] is isotropic
for e[d]λA so ker(φ1) ⊆ A[d1] is isotropic for e[d1]λA by the usual properties
of the Weil pairing [41, Lemma 16.1] and of cardinality dg1, as we saw. Using
Lemma 2.1 again, we obtain a principal polarisation λC on C such that φ1 is a
(λA, λC)-polarised isogeny of polarised degree d1.

To conclude, we verify that φ2 is a (λC , λB)-polarised isogeny of polarised de-
gree d2. Substituting into φ̂λBφ = [d1d2]λA, we obtain φ̂1φ̂2λBφ2φ1 = [d2d1]λA =
[d2]φ̂1λCφ1 and conclude that φ̂2λBφ2 = [d2]λC . Indeed, isogenies are surjective
so fh = gh implies f = g and by forming the dual (twice) we see that hf = hg
also implies f = g. Note that this last argument also proves the uniqueness of
φ1 and φ2. This completes the proof.
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2.3 Kani’s lemma and embedding isogenies into higher degree

If (φji)ij is a matrix of polarised isogenies φij : Ai → Bj between PPAVs, then

its polarised dual is given by (φ̃ij)ij . Whether or not a 2× 2 matrix of polarised
isogenies is a polarised isogeny is the content of Kani’s lemma.

Lemma 2.3 (Kani, [54, Lemma 2.1]). Let A1, A2, B1, B2 be PPAVs defined
over k and let φij : Ai → Bj be polarised dij-isogenies. The map

Φ =

(
φ11 φ21

φ12 φ22

)
: A1 ×A2 → B1 ×B2

is a polarised isogeny if and only if d11 = d22, d12 = d21 and the corresponding
square SΦ

A1 B1

B2 A2

φ11

−φ12 φ̃21

φ̃22

commutes. In such cases, degp(Φ) = d11 + d12 and we call Φ the Kani-map
corresponding to the Kani-square SΦ. Further, if d11 = d22 is coprime to d12 =
d21, we call the Kani-square a (d11, d12)-isogeny diamond. Finally, when d11 is
coprime to d12 and d = d11 + d12 is coprime to the characteristic of k, then

ker(Φ) = {([d11]x, φ̃21φ11(x)) | x ∈ A1[d]} .

If Φ can be efficiently evaluated, then so can φij , and Φ is said to embed φij .
In other words, Φ is an efficient representation of the φij in the sense of the
following definition.

Definition 2.2. Let A be an algorithm. Given a d-isogeny φ : A→ B between
PPAVs of dimension g defined over Fq, an efficient representation of φ with
respect to A is some data Dφ ∈ {0, 1}∗ of polynomial size in g, log(d) and
log(q) such that for all P ∈ A(Fqk), A with input (Dφ, P ) returns φ(P ) in
polynomial time in g, log(d), k and log(q).

3 Our algorithmic approach

We now describe our algorithm for computing the class group action by a general
orientation.

3.1 Applying Kani’s lemma in dimension 4

The factorisation lemma (Lemma 2.2) gives us a strategy to embed arbitrary
isogenies into higher dimension [49, Remark 2.10]. If φ : A → B, ψ : A → C
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are isogenies between PPAVs with coprime polarised degrees, we can form a
Kani-diamond by factoring the composition ψφ̃ as φ̃′ψ′ whereby ψ′ : B → D
and φ′ : C → D have polarised degrees degp(φ

′) = degp(φ),degp(ψ) = degp(ψ
′).

The kernel of the resulting Kani-map can be computed so long as ψφ̃ is known
on B[degp(φ) + degp(ψ)].

When computing the class-group action of [a] on a primitively oriented elliptic
curve (E, ι), the isogenies φ,ψ are taken to be φ̂b, φ̂c : Ea → E where b, c are
representatives of [a]. The composition φ̂cφb = φcb is an endomorphism on E
dictated by ι and so the kernel of the resulting 2-dimensional Kani-map can be
computed so long as the N(b)+N(c) torsion is accessible. For practically efficient
computation (using [20] for instance), we must find ideals b, c representing [a]
such that N(b) + N(c) = 2e, where 2e+2 | p + 1 in order to work over Fp2 (the
reason we need 2e+2 to divide p + 1 is due to technicalities when using level-2
theta coordinates to compute higher-dimensional isogenies). However, finding
ideals b, c satisfying this norm equation is not easy in practice and can only be
done with standard techniques when p is much bigger than |disc(O)| (which is
not suitable for CSIDH/CSURF, where |disc(O)| = p or 4p).

Goal: solve the norm equation:

uN(b) + vN(c) = 2e (3)

with 2e+2 | p+1, [a] = [b] = [c], u, v > 0, gcd(uN(b), vN(c)) = 1, and such that we
can build efficiently computable dimension-d isogenies Φu : E

d → Au, Φv : E
d →

Av of polarised degrees u, v.
Indeed, the factoring lemma (Lemma 2.2) ensures that we have a (uN(b), vN(c))-

isogeny diamond

Au Ed Eda

Ed

AvA

Φ̃u Φb

Φ̃c

Φv

Ψ

Φ

where Φb := diag(φb), Φc := diag(φc) : E
d → Eda , Φ is an uN(b)-isogeny and Ψ is

a vN(c)-isogeny. Hence, by Kani’s Lemma 2.3, we can embed the compositions

Φb ◦ Φ̃u and Φc ◦ Φ̃v into a 2d-dimensional 2e-isogeny F : Au ×Av → Eda ×A.
Except when u and v are perfect squares as in [50] (which does not make

the norm equation much easier to solve), we cannot expect Φu and Φv to be
one-dimensional. Using higher dimensions d ≥ 2 appears necessary because it is
difficult to construct (efficient representations of) outgoing 1-dimensional isoge-
nies Φu, Φv of large given degree u, v on E without knowing the endomorphism
ring End(E): the only tools we have at our disposal to produce arbitrary-degree
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isogenies all require higher dimensions. In fact, a variant of this problem (con-
struct a large prime degree isogeny on E) is conjectured to be cryptographically
hard [4, Problem 2].

In any case, Zarhin’s trick [28, Th. 11.29, Eq. (4)] would allow us to efficiently
construct endomorphisms Φu, Φv of E

4 with the prescribed polarised degrees u, v.
However, we consider computing the corresponding 8-dimensional isogeny F to
be too expensive. Instead, we will see in Section 4 how to find solutions when
d = 2. Consequently, we have to compute a 4-dimensional isogeny F , which can
be done efficiently with level-2 theta coordinates [18]. As mentioned earlier, the
algorithms to compute the 2e-isogeny F require 2e+2-torsion points, so we need
2e+2|p+ 1 instead of 2e|p+ 1 to be able to work over Fp2 .

Unfortunately, there do not always exist positive integer solutions u, v to
uN(b)+vN(c) = 2e. Indeed, the Frobenius coin problem tells us that we are only
guaranteed solutions when 2e ≥ N(b)N(c) − N(b) − N(c); on the other hand,
when O = Z[

√
−p] (as in CSIDH), the smallest representative of any class [a]

in Cl(O) is expected to be of size roughly
√
p. So, recalling that 2e+2 | p + 1,

we see that we rarely have guaranteed solutions u, v. The solution we propose
to overcome this difficulty is to give some additional freedom on the choice of
ideals b, c by factoring out their smooth part.

3.2 Factoring out easy steps first

We will now describe how to compute the action of [a] on (E, ι) in four dimen-
sions. Throughout this section, b, c are primitive9 representatives of [a].

The idea. Suppose we can factor b = bebk, c = ceck, so that the isogenies
φbe

: E → E1, φce : E → E2 are efficiently computable (e.g. smooth degree) and
so that we can find efficiently computable isogenies Φu : E

2
1 → Au, Φv : E

2
2 → Av

(e.g. integer-matrix endomorphisms) with polarised degrees u, v satisfying

uN(bk) + vN(ck) = 2e. (4)

Then we can consider the following (uN(b), vN(c))-isogeny diamond

Au E2
1 E2

a

E2
2

AvA

Φ̃u Φbk

Φ̃ck

Φv

Ψ

Φ

9 i.e. neither b nor c is contained in NO for any N > 1.
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where ΦI is the 2-dimensional isogeny diag(φI , φI) given by the action of I ⊆ O.
Then, Kani’s lemma yields a 4-dimensional isogeny

F :=

(
Φbk

◦ Φ̃u Φck ◦ Φ̃v
−Ψ Φ̃

)
: Au ×Av → E2

a ×A, (5)

with kernel

ker(F ) =
{
([uN(bk)]x, ΦvΦ̃ckΦbk

Φ̃u(x)) | x ∈ Au[2
e]
}

=
{
([uN(bk)]x, ΦvΦckbk

Φ̃u(x)) | x ∈ Au[2
e]
}

=
{
([N(bk)]Φu(y), ΦvΦckbk

(y)) | y ∈ E2
1 [2

e]
}
. (6)

Since b, c both represent [a], cb = σO is principal and we can evaluate φcb = ι(σ).
Having computed φce and φbe , we can evaluate

N(be)N(ce)φckbk
= φceι(σ)φ̂be

. (7)

and compute ker(F ) (more exactly points of 2e+2-torsion generating ker(F ) as
required in [18]). We refer to Section 5.2 for more details on the kernel compu-
tation in the case of CSIDH.

The algorithm. By construction, uN(bk) + vN(ck) = 2e has at least as many
positive integer solutions u, v as uN(b)+vN(c) = 2e. Indeed, every ideal appear-
ing as bk can also be chosen as b (with be = 1). More relevant, though, is that
the norms of the ideals bk are smaller, and so we hope for more u, v solutions.

The ideals be, ce should be chosen so that the corresponding isogenies φbe , φce

are easy to compute, e.g. of smooth degrees. More precisely, letting B be a set
of small primes, we permit be, ce to be a product of ideals lying above the primes
in B. Note that since be, ce are primitive, these primes will all be split in O.

With this requirement we now proceed as follows (we refer to Section 5.1 for
details).

1. Obtain a set S of short representatives of [a] (e.g. by Lagrange-reduction).
2. Factor each b in S as b = bebk maximising the norm of be.
3. Select a pair of ideals b = bebk and c = ceck from S with N(bk),N(ck)

coprime, prioritizing those with the smallest N(bk),N(ck).
4. Enumerate the positive integer solutions u, v of uN(bk) + vN(ck) = 2e.
5. Return a solution u, v if it allows for the construction of Φu, Φv; else choose

a different b, c pair.

We briefly remark that this technique of splitting the isogeny computa-
tion into an easy 1-dimensional, followed by potentially expensive (d ≥ 2)-
dimensional computation also allows us to compute more isogenies Φu of pre-
scribed polarised degree u. Indeed, the näıve approach of constructing Φu as a
2× 2 integer-matrix (

xu −yu
yu xu

)
(8)



PEGASIS: Practical Effective Class Group Action 13

only permits u = x2u + y2u to be a sum of two squares. Composing Φu as the
diagonal of some one-dimensional isogeny of sufficiently smooth degree gu (e.g.
B-smooth), and then a matrix as above allows for polarised degrees u = gu(x

2
u+

y2u) (see Section 4.1).

3.3 Finding the codomain orientation

Once we have computed the 4-dimensional isogeny F : Au × Av → E2
a × A and

extracted Ea from its codomain (following the approach presented in Appendix B
in the case of CSIDH), we still have to compute the orientation ιa := (φa)∗(ι) on
Ea. In the case of CSIDH, this orientation is naturally given by the Frobenius
endomorphism and does not need to be computed. However, this orientation is
not that easy to determine in general.

Given a generator α ∈ O of O (i.e. O = Z[α]), we only have to com-
pute an efficient representation of ιa(α), as defined in Definition 2.2. Assuming
|disc(O)| ≤ 22f with 2f | p + 1, we can always find α of norm bounded by 22f

and it suffices to evaluate ιa(α) on a basis of Ea[2
f ] to efficiently represent this

endomorphism, e.g. using the higher dimensional interpolation algorithms from
[56, Theorem 3.7 & Section 6.4]. Furthermore, if e+2 ≤ f , then knowing ι(α) on
the 2f -torsion is sufficient to compute the 2e+2-torsion lying above ker(F ) given
by Equation (6) so to compute the action of any ideal on E. The same holds for
Ea: the knowledge of ιa(α) on Ea[2

f ] is sufficient to propagate the ideal class
group action further.

Now we explain how we compute ιa(α) on a basis of Ea[2
f ]. Using the fact

that cb = σO, we obtain that

ιa(α) = (φa)∗(ι) =
1

N(a)
φa ◦ ι(α) ◦ φ̂a =

1

N(b)
φb ◦ ι(α) ◦ φ̂b.

Let (P1, Q1) and (Pa, Qa) be two bases of E1[2
f ] and Ea[2

f ] respectively. Then
by Eq. (5), we have F (Φu(P1, 0), 0) = ([u]φbk

(P1), 0, ∗) so we can evaluate
[u]φbk

(P1), hence φbk
(P1) by multiplying by an inverse of u mod 2f . We com-

pute φbk
(Q1) similarly. Now, with (easy) discrete logarithm computations in

Ea[2
f ], we may find a, b, c, d ∈ Z such that φbk

(P1) = [a]Pa+[b]Qa and φbk
(Q1) =

[c]Pa + [d]Qa. Then, a simple matrix inversion yields

φ̂bk
(Pa) = [δN(bk)]([d]P1 − [b]Q1) and φ̂bk

(Qa) = [δN(bk)](−[c]P1 + [a]Q1),

with δ an inverse of ad−bc mod 2f (which does exist because N(bk) = deg(φbk
)

is odd, so φbk
maps a 2f -torsion basis to a 2f -torsion basis). So we have computed

(φ̂bk
(Pa), φ̂bk

(Qa)). Similarly, knowing φbe , we can compute the action of its
dual φ̂be

on the 2f -torsion provided that N(be) is odd. We can impose this
condition by removing 2 from the set of allowed primesB. Hence, we can evaluate
φ̂be

◦ φ̂bk
= φ̂b on the basis (Pa, Qa). We can then evaluate [N(b)]ιa(α) = φb ◦

ι(α)◦φ̂b = φbk
◦φbe◦ι(α)◦φ̂be◦φ̂bk

on (Pa, Qa), using our knowledge of the action
of ι(α) on the 2f -torsion, of φbe and of φbk

via F . Since N(b) = N(be)N(bk) is
odd, we can invert it modulo 2f and finally obtain (ιa(α)(Pa), ιa(α)(Qa)), as
desired.
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4 Computing 2-dimensional isogenies of prescribed
polarised degree

In this section, we explain how to construct dimension 2 isogenies Φu, Φv of
prescribed polarised degree u, v, in order to solve Eq. (3) (or more precisely the
version in Eq. (4)).

We first treat an easy special case in Section 4.1. Then we explain in Sec-
tion 4.2 how to treat the case of u (or v) an arbitrary positive integer. The
drawback of the latter approach is that it involves computing a 4-dimensional
2e-isogeny to build Φu in dimension 2.

4.1 The simplest case: when the polarised degree is B-good

Let us first assume that u and v are a sum of two squares. Then, given a curve
E and an integer u = x2u + y2u, the endomorphism

Mu =

(
xu −yu
yu xu

)
(9)

on E2 is such that MuM̃u = [u] is the multiplication by u on each component.
Hence Mu induces an isogeny Φu of polarised degree u as desired.

The probability that a random number u can be written as sum of two squares
is roughly 1/

√
log(u) ≈ 1/

√
log(p)/2. Unfortunately, writing u as above requires

the factorisation of u. If we instead restrict u to be a prime, the probability goes
down to the order of 1/ log(u). Since we need both u and v to be of this form,
we expect to find a valid pair after ≈ log(p)2 attempts. Looking at the size of
the primes we are working with, this approach becomes soon too expensive.

Instead, we can adopt the same strategy as in Section 3.2 to relax our con-
dition and aim for B-good values u, v, for a given set of small primes.

Definition 4.1. Let B be a set of small primes. We say that u ∈ N∗ is B-good
when u is of the form u = gu(x

2
u+y

2
u) where xu, yu ∈ N and gu ∈ N∗ is a product

of primes in B.

We may then write u = gu(x
2
u + y2u) and v = gv(x

2
v + y2v), as above, where

gu and gv contain all the prime factors of u, v that are in B. Recall that an
integer can be written as a sum of two squares if and only if, in its prime
power decomposition, there is no prime power ℓk such that k is odd and ℓ ≡ 3
mod 4 [37, Ch. 2.15, Ex. 10]. We can then restrict gu and gv to primes that
are 3 mod 4. Notice that small prime numbers are more likely to appear in the
factorization of a number, and hence to cause failure of the sum of squares
condition. Heuristically, by taking out factors 3, 7 and 11 we already increase
the probability of finding a sum of squares by a factor 3. If we choose O such
that these small primes are split in O, we can easily compute isogenies of degrees
gu and gv via the action of Cl(O). In particular, in the case of CSIDH, these
isogenies are defined over Fp so they are even more efficient to compute (see
Section 5.2).
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Given a pair u, v with no factors in B, we are now left with the task of deter-
mining if both numbers can be expressed as sums of two squares. As mentioned
above, checking this condition requires factoring, which we cannot afford. We
instead perform trial division up to a fixed bound (104 for the 500 and 1000
parameters, and 105 for all the others), and then test what is left for primality.
We observe that this procedure reduces the chances of finding a good pair by 2
to 3 orders of magintude, as expected.

If the primality test succeeds, and all nonsquare factors are 1 mod 4, we can
apply Cornacchia’s algorithm to obtain xu and yu (respectively xv, yv). This
strategy is further discussed in Section 5.2 in the case of CSIDH.

Remark 4.1. It is possible to relax the B-good condition on (u, v) by allow-
ing u (resp. v) to take the form gu(ax

2
u + by2u) (resp. gv(ax

2
v + by2v)), where

gu, gv, a, b ∈ B, while ensuring that Kani’s lemma remains applicable as in Sec-
tion 3.1. Then, at the cost of computing 4 additional isogenies of degree a and b
with Elkies’ algorithm, we improve the likelihood that u and v are suitable for
computing isogenies of degree u and v in dimension 2. Experiments have shown
that allowing a and b to take values in {2, 3, 5, 7} increases the probability of
success by approximately a factor of 3. Further details on this construction can
be found in Appendix C.

4.2 The general case

We now treat the case of a general u, v. Although it is easy to construct Φu, Φv
in dimension 4, we saw in Section 3.1 that this would involve a dimension 8
isogeny for F . In this section we explain how to construct them in dimension 2,
on E2. For that, we extend the approach of QFESTA [46] from dimension 1 to
dimension 2. A drawback is that our approach will be heuristic, although our
implementation shows that the heuristic works well in practice.

Let (E, ι) be an O-oriented supersingular elliptic curve. Let ∆ = disc(O) be
the discriminant of O. First, we show that we can heuristically build (efficient)
endomorphisms on E2 of polarised degree N , as long as N ≫ |∆|. By construc-
tion, we can evaluate any endomorphism γ ∈ O, which gives us a 1-dimensional
isogeny ι(γ) of degree N(γ). Since

√
∆ ∈ O, the quadratic form γ 7→ N(γ) re-

stricts on the suborder Z+
√
∆Z of O to the quadratic form q(x, y) = x2+ |∆|y2.

Now let γ1, γ2 ∈ O of norms n1, n2 respectively, and consider the endomor-
phism

γ =
(

ι(γ1) ι(γ2)
−ι(γ2) ι(γ1)

)
∈ End(E2).

Then, by [56, Lemma 3.2], its polarised dual is

γ̃ =
(
ι(γ1) −ι(γ2)
ι(γ2) ι(γ1)

)
,

so that γ̃◦γ = [n1+n2] in End(E2) and γ is an (n1+n2)-isogeny. In particular, we
can build endomorphisms on E2 of polarised degreeN as long asN is represented
by the quadratic form q(x, y, z, t) = (x2 + y2) + |∆|(z2 + t2).
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Heuristic 1. Let N ≫ |∆|. Then we can heuristically build an efficient endo-
morphism γ ∈ End(E2) of polarised degree N .

Justification. Since N ≫ |∆|, we can sample many small z, t such that (z2 +
t2)|∆| < N . Then if m = N −|∆|(z2+ t2) is a sum of two squares, we can find γ
by the discussion above. This situation can be efficiently detected whenever m
is a prime congruent to 1 mod 4, which heuristically happens with probability
≈ 1/ log(N). Since N ≫ |∆|, we can try with many different couples (z, t) until
one succeeds.

In practice, we can use a direct adaptation of the algorithm RepresentInteger

from [23] to find a solution of (x2 + y2) + |∆|(z2 + t2) = N .
Now by Lemma 2.2, if γ is an efficiently represented endomorphism of E2 of

polarised degree N = N1N2, with N1, N2 coprime, then it decomposes uniquely
as γ = µ2 ◦ γ1 = µ1 ◦ γ2 where the γi, µi are isogenies of polarised degree Ni.
Furthermore, by Kani’s lemma (Lemma 2.3) the 4-dimensional isogeny

Γ =

(
γ1 µ̃2

−γ2 µ̃1

)
(10)

is of polarised degree N1+N2. The kernel of Γ is given by KerΓ = {(N1P, γP ) |
P ∈ Eg[N1 +N2]}, so we can efficiently evaluate Γ to obtain the 2-dimensional
isogeny γ1 of polarised degree N1 as long as the (N1 + N2)-torsion on E is
smooth and accessible (i.e. defined over a small extension of Fp). Hence, an
efficient representation of γ yields an efficient representation of γ1 in the sense
of Definition 2.2.

For simplicity, and because this matches our implementation choice, we will
now restrict to the case where we look for N1 +N2 = 2e a power of two.

Theorem 4.1. Assume that E[2e] ⊆ E(Fp2) (with e ≥ 3), that 23e/2−1 ≫ |∆|,
and that u < 2e−1 is odd. Then, under Heuristic 1, we can efficiently represent
an isogeny Φu of polarised degree u on E2.

Proof. First consider N = N1N2 with N1 = u,N2 = 2e − u. Since u is assumed
to be odd, N1 is coprime to N2. If N ≫ |∆|, we can use Heuristic 1 to build
an endomorphism in dimension 2 of polarised degree N , which we split via a
4-dimensional isogeny of polarised degree 2e to get Φu.

If this is not the case, then since 23e/2 ≫ |∆| by assumption, this means that
u is smaller than 2f , with f = ⌈e/2⌉. We use a two step solution like in [47,
27]. First we let u2 = u(2f − u), then 2f − 1 ≤ u2 < 22f−2 ≤ 2e−1. Then we
let N = u2(2

e − u2). By our choice of f , N ≥ 23e/2−1, so N ≫ |∆| and we can
use Heuristic 1 to build an endomorphism in dimension 2 of polarised degree N ,
which we split a first time (via a 4-dimensional isogeny of polarised degree 2e)
to get a 2-dimensional isogeny Φu2 of polarised degree u2, which we split again
(via a 4-dimensional isogeny of polarised degree 2f ) to get Φu.

Remark 4.2.
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– To compute Γ as defined in Eq. (10), we only need the m-torsion to be
smooth and accessible on E, where N1 + N2 | m2, see [58, § 6.3 and Ap-
pendix B]. This allows to relax the conditions on Theorem 4.1 to u < 22e

and 23e−1 ≫ ∆.

– In practice, for our application from Section 3, we have u, v ≈
√
|∆|. Fur-

thermore, in the case of CSIDH, we have ∆ = −p, and we select p such
that p = c2f − 1 for a small cofactor c. In particular, we can take e = f in
Theorem 4.1, so that 2e ≈ p. In that case we already have u(2e−u) ≫ p, and
we do not need the two step solution, nor the more relaxed torsion condition
from the item above.

Combining Section 3 with Theorem 4.1, the resulting algorithm to compute
the action of a quadratic ideal a ⊂ O on an O-oriented elliptic curve is very
similar to the algorithm used in [5] to convert a quaternionic ideal to an isogeny
when the full endomorphism ring of E is known. We make up for the lack of
known endomorphisms on E to build isogenies of suitable fixed degree by going
up to dimension 2 and working on E2. This doubling of dimension propagates
to the rest of the algorithm, and we end up computing Φu, Φv and Ea via an
isogeny of dimension 4, compared to dimension 2 in [5].

This change of dimension has important consequences for the fine-tuning of
the algorithm. Indeed, as we have seen in Section 4.1, Φu (resp. Φv) are much
easier to compute whenever u (resp. v) is a sum of two squares, or at least B-
good in the sense of Definition 4.1. In particular, in that case we do not need to
use a 4-dimensional isogeny to compute Φu.

A similar situation happened in [5]: if u was a sum of two squares we could
compute Φu directly without going through a 2-dimensional isogeny. However,
experiments showed that spending more time on the norm equation to find u
a sum of two squares did not compensate having to do one less 2-dimensional
isogeny. The situation is different in our case, because a 4-dimensional 2e-isogeny
is much slower than a 2-dimensional 2e-isogeny (by a factor roughly ×8). De-
pending on the size of our parameters, experiments show that the optimal choices
depend on the size of ∆.

– If ∆ is of moderate size, we look for B-good u, v, and only compute one
4-dimensional isogeny for Ea.

– If ∆ is of large size, we look for only one of u, v to be B-good, while we let the
other one be arbitrary. This time computing φa requires two 4-dimensional
isogenies. For CSIDH, our experiments in Section 6.4 suggest this strategy
becomes faster than the previous one for p of 4000 bits. We remark that for
very large ∆, we expect that letting u, v be arbitrary and computing three
4-dimensional isogenies would be the optimal choice.

In the case of CSIDH (detailed in Sections 5 and 6), only the first choice is
implemented and the computation stays reasonably efficient even for our biggest
parameters (p of 4000 bits) as long as the allowed set of small split primes B is
well chosen. We refer to Section 6.4 for further discussion on the above trade-off.
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5 Our algorithm specialized to CSIDH

In this section, we apply our algorithm to the CSIDH setting, or more accurately,
the CSURF setting [12]; we fix a prime of the form p = c2f −1 where c is a small
odd integer and f ≫ 1 so that p ≡ 7 (mod 8), and work with curves oriented

by Z
[
1+

√
−p

2

]
, where the orientation is given by sending

√
−p to the Frobenius

endomorphism. Not only does using the orientation given by Frobenius make
evaluating the orientation very fast, but by using the maximal order instead of
the typical CSIDH suborder Z[

√
−p], we are able to execute our whole algorithm

over Fp , by choosing a particularily suitable basis of E[2e], and working with
x-only arithmetic. This is further detailed in Section 5.2 and Appendix D.

At a high level, the three-step process is summarized as in Algorithm 1. We
now describe the involved steps in more detail.

Algorithm 1 EvaluateAction(E, a)

Input: E a supersingular elliptic curve over Fp defined on the surface.

Input: a ⊆ Z
[
1+

√
−p

2

]
an ideal.

Output: a ⋆ E

1: Compute l ⊆ Z
[
1+

√
−p

2

]
an ideal of small norm. ▷ Precomputation

2: Set E′ := E and a′ = a.
3: fail, be, bk, ce, ck, u, v, e := FindUV(a′) ▷ Step 1
4: if fail then ▷ Rerandomize the ideal
5: Compute a′ = a′l
6: Compute E′ = l ⋆ E′ using Elkies algorithm.
7: run Line 3 on E′, a′.
8: end if
9: KernelData := ComputeKernelData(E′, be, bk, ce, ck, u, v, e) ▷ Step 2
10: Compute the 4-dimensional isogeny F , defined by KernelData. ▷ Step 3
11: Extract Ea from the codomain of F . ▷ See Appendix B.4.
12: return Ea.

5.1 Step 1: the norm equation

In this section, we explain how to solve the norm equation (4) sketched in Sec-
tion 3.2. This subsection is summarized in Algorithm 2. As in Section 4.1, we
fix a set of small Elkies primes B, i.e. of primes that split in Q(

√
−p). Notice

that we can always impose 2 ∈ B. We begin by creating a list of primitive ideals
equivalent to a. More precisely, we obtain a list of equivalent ideals a(i) such that

a(i) = a
(i)
e a

(i)
k and N(a

(i)
k ) is a product of primes in B. We then want to find a

pair (i, j) such that for N1 = N(a
(i)
k ) and N2 = N(a

(j)
k ) (note that the smooth

part has been removed from the norm), we can find positive integers u, v solving
the equation

uN1 + vN2 = 2e. (11)
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Since generically N1N2 determines the minimal value for e such that the above
equation has a solution, we test pairs in order of increasing N1N2.

Given such a pair of norms N1, N2, we first check that they are coprime.
Indeed, if gcd(N1, N2) is not a power of 2, Equation (11) has no solutions. Since
2 ∈ B and we assume N1, N2 has no prime factors in B, this requirement simply
becomes gcd(N1, N2) = 1.

If gcd(N1, N2) = 1, we can find u0 and v0 such that u0N1 + v0N2 = 1 via
the extended Euclidean algorithm, and consequently 2eu0N1 + 2ev0N2 = 2e.
Note that one of u0 and v0 will be negative and that we parametrize all possible
solutions to the equation by writing

(2eu0 + kN2)N1 + (2ev0 − kN1)N2 = 2e,

for some k ∈ Z. This also allows to determine the minimal e for which Equa-
tion (11) has a solution by enumerating the set of k for which both u = 2eu0+kN2

and v = 2ev0 − kN1 are positive.

Remark 5.1. The exponent e in Equation (11) determines the number of four-
dimensional 2-isogeny steps to be computed, so taking a lower exponent e will
be more efficient.

As remarked before and also observed in [5], solving Equation (11) directly for
a(i) and a(j), often fails since N1, N2 are in O(

√
p) and 2e < p, which makes the

original Clapoti approach unpractical in our case. Removing factors in B, makes
N1 and N2 much smaller and hence greatly increases the probability of finding
solutions to Equation (11): the number of expected solutions grows roughly as
the product of all factors removed. This leads to the following tradeoff: the bigger
the set of primes B, the higher the probability of finding a solution, but the more
time is spent in the second step computing small degree isogenies. Furthermore,
even if the probability of finding a solution for a given choice of B is low, and
in particular, we fail to find a solution, we can simply rerandomize the starting
ideal (by some small ideal) and start over. More details about this approach are
given below.

Assuming that we can find enough solution pairs (u, v), for each one we have
to determine whether u and v are B-good, i.e. if we can write u = gu(x

2
u + y2u)

and v = gv(x
2
v + y2v) with the prime factors of gu and gv in B. Recall that a

number can be expressed as a sum of two squares if and only if all its prime
factors that are 3 mod 4 appear with an even exponent. The obvious choice is
then to set gu (resp. gv) to be the product of all prime factors that are 3 mod 4
and contained in B and dividing u (resp. v). To determine whether what is left
contains more prime factors 3 mod 4 we would need to factor u, which is too
expensive in general. As such we simply proceed by trial division up to a small
bound, hoping that what is left at the end is a prime that is 1 mod 4 (note that
we simply reject when it is 3 mod 4). If everything succeeds, we have found the
factorization of u, and hence its decomposition as a sum of two squares. The
same procedure applies to v. How to choose an optimal set B is analyzed in
greater detail in Section 6.1.
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Once we have found a full solution, we proceed to the next step: we will denote
the ideals a(i), a(j) as b and c, so in particular, N1 = N(bk) and N2 = N(ck).

Rerandomization For some ideals, Equation (11) may not have a solution
with u, v of the required shape. As already observed, increasing the bound B is
always a possible solution, though this quickly becomes expensive.

Another solution to this is to simply rerandomize the starting ideal a. Namely,
if none of the sampled, equivalent ideals gives us a solution for Equation (11), we
can multiply a by a non-principal ideal l for which the action is easy to evaluate
(e.g. an ideal above ℓ, where ℓ is the smallest split prime). We obtain a new ideal
a′ = al and try to solve Equation (11) for this ideal instead. If we manage to
do so, we can simply run our algorithm on a′, using this solution, starting from
the starting curve El = l ⋆ E instead, which is easy to compute by the choice
of l. Otherwise, we can rerandomize again by computing a′′ = la′, and so on. As
soon as Equation (11) has a reasonable chance of being solved, this method takes
care of failures quite efficiently, making Step 1 faster at the cost of a few Elkies
steps. The average number of rerandomizations for different levels are reported
in Table 2.

Algorithm 2 FindUV(a)

Input: a ⊆ Z
[
1+

√
−p

2

]
an ideal.

Output: Fail, flag indicating failure to find solution.

Output: be, bk, ce, ck ⊆ Z
[
1+

√
−p

2

]
ideals, such that bebk ∼ ceck ∼ a.

Output: u, v, e positive integers, such that u ·N(bk) + v ·N(ck) = 2e, for e < f − 3.
1: Compute a list of short ideals a(i) equivalent to a
2: Write a(i) = a

(i)
e a

(i)
k , such that N(a

(i)
e ) is a product of primes in B

3: Sort the list by N(a
(i)
k )

4: for all pairs (i, j) with 1 ≤ i < j ≤ 10 do

5: Set N1 = N(a
(i)
k ), N2 = N(a

(j)
k )

6: Find all pairs (u, v) such that uN1 + vN2 = 2e, with e ≤ f − 3
7: for each pair (u, v) do
8: Remove factors of B from u, v
9: Perform trial division on u, v ▷ Bound depends on security level
10: if factors 3 mod 4 are found with odd exponent then
11: Continue to next pair
12: end if
13: if remaining part of u, v are both prime then
14: return False, a

(i)
e , a

(i)
k , a

(j)
e , a

(j)
k , u, v, e

15: end if
16: end for
17: end for
18: return True, , , , , , , .
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5.2 Step 2: computing kernel points

After determining a suitable pair of ideals b, c, our goal is to construct the 4-
dimensional 2e-isogeny described in Section 3.2. We now detail how to derive
the kernel of this isogeny. This subsection is summarized in Algorithm 3.

Let E denote the starting curve on which we want to act with a, then we
obtain the following diagram derived from the isogeny diamond in Section 3.2:

E2
u E2

1

E2

E′2

E2
a

E2
2 E2

E2
v

Ψ := Φ′
v ◦ Φ̃′

2

Φ̃u

Ψ1

Φ1

Φ̃2

Ψ2

Φv

Φ := Φ′
1 ◦ Φ̃′

u

In the diagram above, we have:

– Ψ1 = diag(φbe , φbe), where φbe is the isogeny corresponding to the action of
be; analogously, Ψ2 = diag(φce , φce);

– Φ1 = diag(φbk
, φbk

) and Φ2 = diag(φck , φck);
– Φu and Φv are isogenies of polarised degree u and v respectively; as explained

in Section 4.1, we can write Φu =Mu diag(φu, φu), with deg(φu) = gu, Φv =
Mv diag(φv, φv) with deg(φv) = gv,Mu andMv being given by Equation (9).

Further, the isogenies Φ and Ψ are the isogenies of polarised degree uN1 and
vN2 completing the square, whose existence is guaranteed by Lemma 2.2. In this
setting we can also describe them explicitly, as the following lemma shows.

Lemma 5.1. Φ is of the form Φ′
1 ◦ Φ̃′

u, where:

– Φ′
1 := diag(φ′

bk
, φ′

bk
) : E′

1
2 → E2

v with E′
1 := [bk] · Ev and φ′

bk
, the isogeny

associated to the action of bk on E′
1;

– Φ′
u := Mu diag(φ

′
u, φ

′
u) : E′

1
2 → E′2, Mu being given by Equation (9) and

φ′
u being the isogeny of degree gu given by the action of the same ideal Iu as

φu (as a product of Elkies primes).

Ψ is of the form Φ′
v ◦ Φ̃′

2, where:

– Φ′
2 := diag(φ′

ck
, φ′

ck
) : E′

2
2 → E2

u with E′
2 := [ck] · Eu and φ′

ck
, the isogeny

associated to the action of ck on E′
2;
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– Φ′
v :=Mv diag(φ

′
v, φ

′
v) : E

′
2
2 → E′2, Mv being given by Equation (9) and φ′

v

being the isogeny of degree gv given by the action of the same ideal Iv as φv
(as a product of Elkies primes).

In particular, the common codomain of Φ̃ and Ψ is a product of elliptic curves
E′2.

Proof. We have to verify that Φ′
1 ◦ Φ̃′

u and Φ′
v ◦ Φ̃′

2 defined above are N1u and
N2v-isogenies respectively making the diagram commute, i.e. such that:

Φ′
1 ◦ Φ̃′

u ◦ Φ′
v ◦ Φ̃′

2 = Φv ◦ Φ̃2 ◦ Φ1 ◦ Φ̃u. (12)

First, we verify that the composition on the left makes sense i.e. that Φ′
u and

Φ′
v have the same codomain. By definition, the codomain of Φ′

u is

E′ = [Iu]E
′
1 = [Iubk]Ev = [IubkIv]E2 = [IuIvbkce]E

and the codomain of Φ′
v is

E′′ = [Iv]E
′
2 = [Ivck]Eu = [IvckIu]E1 = [IuIvckbe]E.

But b = bebk and c = ceck are both equivalent to a. It follows that bkce and ckbe
are equivalent, so that E′ ≃ E′′.

By construction, Φ′
1 ◦ Φ̃′

u and Φ′
v ◦ Φ̃′

2 are N1u and N2v-isogenies respectively,
so we only have to prove Equation (12). On the one hand, we have:

Φ′
1 ◦ Φ̃′

u ◦ Φ′
v ◦ Φ̃′

2 = M̃u ◦Mv ◦ diag(φ′
bk

◦ φ̂′
u ◦ φ′

v ◦ φ̂′
ck
, φ′

bk
◦ φ̂′

u ◦ φ′
v ◦ φ̂′

ck
),

since M̃u and Mv commute with diagonal isogenies. On the other hand:

Φv ◦ Φ̃2 ◦ Φ1 ◦ Φ̃u =Mv ◦ M̃u ◦ diag(φv ◦ φ̂ck ◦ φbk
◦ φ̂u, φv ◦ φ̂ck ◦ φbk

◦ φ̂u).

Both φ′
bk

◦ φ̂′
u ◦ φ′

v ◦ φ̂′
ck

and φv ◦ φ̂ck ◦ φbk
◦ φ̂u correspond to the action of the

ideal IuIvckbk on Eu so these isogenies must be equal. Besides, a simple matrix
computation ensures that M̃u and Mv commute. This proves Equation (12) and
the lemma.

Let (P,Q) be a basis of E1[2
e+2] (recall from Section 3.1 that the theta

isogeny algorithm requires the 2e+2-torsion to compute a 2e-isogeny, see Ap-
pendix A for more details). To compute the kernel of the isogeny in dimension
4, we need to compute the points

Pu = φu(P ), Qu = φu(Q)

on Eu and

Pv = φv ◦ φ̂ck ◦ φbk
(P ), Qv = φv ◦ φ̂ck ◦ φbk

(Q),

on Ev.
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Isogenies of degree gu and gv. The isogenies φu and φv with deg(φu) = gu
and deg(φv) = gv have no specific requirement other than their degree. Although
it is possible to deal with all small primes via Vélu’s algorithm [64], it is more
efficient to restrict B to Elkies primes (i.e. splitting primes in Q(

√
−p)) and we

can use the correpsonding algorithm [30] to compute the small degree isogenies.
Note that φu of degree gu and φv of degree gv can be used to construct

2-dimensional isogenies of polarised degree u = gu(x
2
u + y2u) and v = gv(x

2
v +

y2v) respectively by composition with matrices Mu,Mv described in Section 4.1.
However, we do not need to perform that step now, as it can be included in the
4-dimensional computation.

Working over Fp . Note that, by definition, the isogenies φb and φc are Fp-
rational, and as noted above, our choice of primes in B imply that φu and φv can
also be chosen to be defined over Fp . The main difficulity comes from evaluating
these isogenies on a basis of E[2e+2], which is not defined over Fp .

We will show that all operations can in fact be carried out over the Kummer
line, where we have a rational basis. Let f the largest integer so that 2f | (p+1).
By our choice of prime, the two eigenvalues of Frobenius on E[2f−1] are±1. Thus,
we can pick a basis ⟨P,Q⟩ = E[2f−1] corresponding to the two eigenvectors of
Frobenius; we let P,Q be points of order 2f−1 satisfying

π(P ) = P, π(Q) = −Q. (13)

Clearly, these points P,Q are Fp-rational on the Kummer line E/ ± 1, and
together (adjusting by translation by a point of 2-torsion if needed) they form
a basis of E[2f−1]. This is where we use that we are on the surface. If we were
on the floor, picking similar points would not give a basis, since in that case,
[2f−2]P = [2f−2]Q, the unique rational point of 2-torsion.

In Appendix D.1 we show how to efficiently generate such a basis, based on
a technique which is similar to how one usually computes bases of E[2f ] over
Fp2 .

Evaluating the ideals. The rest of this section will be devoted to the com-
putation of Pv, Qv. In particular, we need to evaluate φ̂ck ◦ φbk

on a basis of
E1[2

e+2]. From Equation (7) we know that

φ̂ck ◦ φbk
=

1

N(be)N(ce)
φce ◦ ι(σ) ◦ φ̂be

(14)

with cb = σO. By construction, N(be) and N(ce) are both smooth, with all their
factors in B. Let us assume for simplicity that they are also odd; the even case
needs a bit more care and is detailed afterwards.

We detail how to evaluate the endomorphism ι(σ). First, assume that σ is of
the form a+b

√
−p, with a, b ∈ Z. Explicitly, this is mapped to the endomorphism

[a] + [b]π, where π denotes the Frobenius endomorphism. Evaluating such an
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endomorphism on our choice of basis is particularily easy: with the same notation
as in the previous section, the evaluation is simply given by

[a]P + [b]π(P ) = [a]P + [b]P = [a+ b]P,

[a]Q+ [b]π(Q) = [a]Q+ [b](−Q) = [a− b]Q.

Note in particular that we can evaluate this on the Kummer line. Although σ

is an element of the order Z[ 1+
√
−p

2 ], and hence is more generally of the form
a + b

√
−p, where a, b are in Z[ 12 ], i.e. are rational numbers with denominator

at most 2, we show in Appendix D.2 how to evaluate this on our basis (on
the Kummer line) without having to use division points, which may not be
Fp-rational.

Further, note that since we are after the action on the 2e+2-torsion, we
can compute (N(be)N(ce))

−1 (mod 2e+2), to account for the division in Equa-
tion (14). Hence, all that remains to evaluate φ̂ck ◦ φbk

is to describe how we
efficiently recover the isogenies φbe

and φce .
These isogenies are (by definition) the product of prime degree Elkies isoge-

nies. More specifically, say that for a given prime ℓ, we have vℓ(N(be)) = k, i.e.
ℓ divides N(be) exactly k times. Then be will act with exactly k degree-ℓ Elkies
isogenies. We can also assume that all these isogenies will be in the same direc-
tion, since otherwise be and consequently b would factor through multiplication
by ℓ, and we assumed that b was primitive (if it was not, the ideal b/ℓ would
also be equivalent to a, but with smaller norm).

With Elkies’ algorithm, we can return both kernel polynomials of degree ℓ
determining the two Elkies isogenies of degree ℓ. To check which polynomial
corresponds to the correct isogeny, we check the eigenvalue of Frobenius, as
described in the original CSIDH paper [13, Section 3]. In more detail, assume
that (ℓ,

√
−p−λ) = l ⊆ be, i.e. we wish to evaluate the action of l. Since the roots

of the correct kernel polynomial h(x) are precisely the x-coordinates of the points
of order ℓ, satisfying π(P ) = [λ]P , we simply test this equality symbolically: we
have the equality

(xp, yp) ≡ [λ](x, y) (mod h(x), y2 − f(x)),

where f(x) is the polynomial coming from the curve equation. If these values
are not equal, we know that this kernel polynomial corresponds to the other
eigenvalue. Note that when we are doing multiple ℓ-isogenies, we need only check
the eigenvalue of Frobenius for the first ℓ-isogeny; after that, we can recognise
the right kernel polynomial to be the one not corresponding to the previous
j-invariant.

Remark 5.2. If be and ce share some steps, we can perform those steps (corre-
sponding to the action of the ideal be + ce) in advance, and start evaluating the
ideal action from the resulting curve. The advantage is twofold: first, we avoid
evaluating the same ideal twice. Second, we do not need to evaluate the com-
mon part on points. We can instead start computing Pu and Pv directly from
the codomain curve.
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Even norm part We now explain how to deal with even normed ideals. For
this, we write the ideal be as

be = be′b2

where b2 is an ideal of norm 2fb , and correspondingly for ce. As explained in
Remark 5.2, the shared steps of be, ce can be computed at the beginning, hence
we can assume that b2 and c2 are coprime (i.e. the corresponding 2-isogenies go
in “opposite” directions). Writing f12 = fb + fc, we get that

φ̂ck ◦ φbk
=

1

N(be′)N(ce′)2f12
φce ◦ ι(σ) ◦ φ̂be

.

The only added difficulity that needs to be accounted for is that we cannot
find an inverse to 2f12 modulo 2e+2.

We fix this by taking a basis of a larger torsion group. Using the same tech-
nique as for the odd normed case, we can thus evaluate

[2f12+1] ◦ φ̂ck ◦ φbk
=

1

N(be′)N(ce′)
φce ◦ ι(σ) ◦ φ̂be

,

and hence we can find the evaluation of φ̂ck ◦φbk
on E1[2

e+2] by instead starting
with a basis of E[2e+2+f12 ]. (We remark that by construction, we have e + 2 +
f12 ≤ f .)

Algorithm 3 ComputeKernelData(E, be, ce, bk, ck, u, v, e)

Input: E a supersingular elliptic curve over Fp defined on the surface.

Input: be, bk, ce, ck ⊆ Z
[
1+

√
−p

2

]
ideals, such that bebk ∼ ceck.

Input: u, v, e positive integers, such that u ·N(bk) + v ·N(ck) = 2e, for e < f − 3.
Output: KernelData necessary for computing the 4-dimensional isogeny.
1: Compute a basis P,Q of E[2f−1]. ▷ See Appendix D to sample special basis.
2: Compute the isogeny ϕbe : E → E1 using Elkies algorithm.
3: P1, Q1 := ϕbe(P ), ϕbe(Q).
4: Double P1, Q1 until they are of order 2e+2. ▷ Nr. of doublings depends on ϕbe .
5: Write u = gu(x

2
u + y2

u) and v = gv(x
2
v + y2

v).
6: Compute a random isogeny ϕu : E1 → Eu of degree gu using Elkies algorithm.
7: Pu, Qu := ϕu(P1), ϕu(Q1)
8: Find a generator σ of the principal ideal ceckbebk.
9: Compute the isogeny ϕce : E → E2, using Elkies algorithm.
10: Compute d ≡ N(ce′)

−1 (mod 2e+2), where ce′ is the odd normed part of ce.
11: P2, Q2 := [d] ◦ ϕce ◦ σ(P ), [d] ◦ ϕce ◦ σ(Q). ▷ See Algorithm 4 for evaluating σ.
12: Double P2, Q2 until they are of order 2e+2. ▷ Nr. of doublings depends on ϕbe .
13: Compute a random isogeny ϕv : E2 → Ev of degree gv using Elkies algorithm.
14: Compute Pv, Qv = ϕv(P2), ϕv(Q2).
15: KernelData := [N(bk), N(ck), gu, xu, yu, gy, xv, yv, Pu, Qu, Pv, Qv].
16: return KernelData.
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5.3 Step 3: computing the 4-dimensional isogeny

In this step, we compute the 4-dimensional 2e-isogeny isogeny F : Au × Av →
E2

a × A from Section 3.2 (defined in Equation (5)). We can actually be much
more explicit than in Section 3.2. From Section 5.2, we obtain that Au = E2

u,
Av = E2

v and A = E′2. In particular

F =

(
Φ1 ◦ Φ̃u Φ2 ◦ Φ̃v
−Φ′

v ◦ Φ̃′
2 Φ

′
u ◦ Φ̃′

1

)
: E2

u × E2
v → E2

a × E′2.

Equation (6) also becomes:

ker(F )

=
{
([uN1]φu(P ), [uN1]φu(Q),

[gu]Mv ·MT
u (φv ◦ φ̂ck ◦ φbk

(P ), φv ◦ φ̂ck ◦ φbk
(Q)))

∣∣ P,Q ∈ Eu[2
e]
}

=
{
([N1]Mu(φu(P ), φu(Q)),

Mv(φv ◦ φ̂ck ◦ φbk
(P ), φv ◦ φ̂ck ◦ φbk

(Q)))
∣∣ P,Q ∈ E1[2

e]
}
. (15)

To compute F , we proceed with theta coordinates of level 2 and the al-
gorithms from [18] (see Appendix B). These algorithms require a basis of an
isotropic subgroup (for the Weil pairing) K ′ ⊂ (E2

u × E2
v)[2

e+2] such that
[4]K ′ = ker(F ).

Let (P,Q) be a basis of E1[2
e+2], ζ := e2e+2(P,Q), η1, α be in-

verses of N1, uN1 modulo 2e+2 respectively, (Pu, Qu) := φu(P,Q) and
(Pv, Qv) := φv ◦ φ̂ck ◦ φbk

(P,Q) the points computed in Step 2. Then,
applying Lemma A.1.(i) to F and the ζ-symplectic basis (x1, x2, y1, y2) :=
((φbk

(P ), 0), (0, φbk
(P )), ([η1]φbk

(Q), 0), (0, [η1]φbk
(Q))), we obtain a basis

T1 := ([N1xu]Pu, [N1yu]Pu, [xv]Pv, [yv]Pv)

T2 := ([−N1yu]Pu, [N1xu]Pu, [−yv]Pv, [xv]Pv)

T3 := ([(1− 2eα)xu]Qu, [(1− 2eα)yu]Qu, [η1xv]Qv, [η1yv]Qv)

T4 := ([−(1− 2eα)yu]Qu, [(1− 2eα)xu]Qu, [−η1yv]Qv, [η1xv]Qv),

of an isotropic subgroup K ′ ⊂ (E2
u × E2

v)[2
e+2] such that [4]K ′ = ker(F ).

To compute F and extract Ea from its codomain, we take as input:

– The points Pu, Qu, Pv, Qv computed in Step 2.
– The integers N1, N2, gu, xu, yu, gv, xv, yv, e obtained from a solution of Equa-

tion (11) obtained in Step 1.

This data is not only useful to compute T1, . . . , T4 but also gluing and diagonal
isogenies located in the beginning of the 2-isogeny chain F that must be handled
with care. For this technical reason, one must provide the data above and not
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T1, · · · , T4 or kernel points of F directly. We refer to Appendix B for a detailed
presentation of the computation of F with level-2 theta coordinates (following
the approach of [18]) and to Appendix A for a cryptographer friendly introduc-
tion to higher-dimensional isogeny computations with theta coordinates.

Remark 5.3 (Working over Fp). Using the basis from Equation (13) for our ellip-
tic curves, we can work with rational theta null points all along our dimension 4
isogeny chain. This is one of the reasons to work on the surface: on the floor,
the elliptic curve level 2 theta null points are not rational. Our kernel generators
have Frobenius-eigenvalue ±1, so define Fp-rational points on the Kummer va-
riety and thus their theta-coordinates are Fp-rational (recall that level-2 theta
coordinates only give an embedding of the Kummer into projective space, not
of the whole variety). This allows us to do the full dimension-4 isogeny compu-
tation over Fp , with the exception of the gluing isogenies. Indeed, as currently
implemented the gluing formulas mix points with eigenvalue 1 and points with
eigenvalue −1, so we need to temporally work over Fp2 . We expect that using
more symmetric gluing formulas would allow us to stay over Fp even for gluing,
but we leave that for future work.

6 Implementation results

In this section we describe different implementation choices and their relative
efficiency tradeoffs. We give concrete timings, and compare them with the cur-
rent state of the art of group action primitives. Our implementation is publicly
available at https://github.com/pegasis4d.

6.1 Parameter choices

Since our algorithm relies on higher dimensional representations of isogenies, we
start with choosing primes of the form p = c2f − 1, ensuring that the full 2f -
torsion is defined over Fp2 . Furthermore, since the probability that Equation (11)
admits a solution, depends heavily on how close 2f is to p, we restrict to the
case where c is small.

Among the possible choices for c we retain those that maximize the number
of small primes that split in O, and in particular, primes that are 3 mod 4, since
these will greatly increase the probability of finding B-good pairs (u, v). Note
that prime factors of c will automatically be split.

To choose the set B, we proceed as follows: we only include split primes
in B, which has 3 advantages: first, we can execute the whole algorithm over
Fp, instead of over Fp2 , resulting in a major speed-up. Second, it allows us
to use Elkies’ algorithm to compute small degree isogenies without explicitly
constructing kernel points over extensions of Fp. Third: such split primes are the
only ones that appear as factors of norms of primitive ideals in O.

The number of primes to include in B is mostly a tradeoff between steps 1
and 2: including more primes in B makes Equation (11) easier to solve (step 1

https://github.com/pegasis4d
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becomes faster), but step 2 will have more (and larger) Elkies isogenies to com-
pute. For each parameter set, we started by setting B = {2, 3} and progressively
added primes until computing ℓ-isogenies would become too expensive. We then
selected the set with the best overall timing. The final choices are reported in
Table 1. A more detailed discussion of the selection process can be found in
Appendix E.

Parameter set f c B

500 503 33 2, 3, 7, 11, 13
1000 1004 15 2, 3, 5, 7, 11
1500 1551 9 2, 3, 5, 11
2000 2026 51 2, 3, 7, 11, 17
4000 4084 63 2, 3, 7, 11, 17, 19

Table 1. Parameter sets used in our implementation for different bitsizes. The prime
p is of the form p = c2f − 1 and B is the set of small split primes used.

6.2 Solving the norm equation

The first step (Section 5.1) begins with creating a reduced basis of the starting
ideal a, followed by a search for small vectors. We are looking for short vectors
of (reduced) norm roughly

√
p, but we allow them to be slightly larger at this

point (up to log(p)
√
p). We then attempt to solve Equation (11) by taking pairs

of the shortest vectors. In general, the more pairs, the higher the probability to
find a solution. However, the first combinations will be the smallest ones, hence
the ones with the highest probability of success. In practice, we observed that
taking combinations only involving the 10 shortest vectors, and rerandomizing
upon failure, was the most efficient choice for all parameter sets.

Finally, for each pair of (u, v) that we obtain, we have to attempt to write
u/gu and v/gv as sums of squares. For this, we do trial division on both with
all prime factors up to 104 for the 500 and 1000 bits parameters, and up to 105

for all larger parameters. If we find factors 3 mod 4 (with odd exponent) not
included in B, we immediately discard the pair. Otherwise, we test what is left
for primality. If they are prime, we have the factorization of (u, v) and hence
their decomposition as sum of two squares. Otherwise, we move on to the next
pair.

6.3 Implementation results

The results of our SageMath 10.5 implementation can be found in Table 2;
timings for each step are in seconds, and are obtained by averaging 100 runs on
an Intel Core i5-1235U clocked at 4.0 GHz.
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Prime size (bits) Prime Time (s) Rerand.

Step 1 Step 2 Step 3 Total

508 3 · 11 · 2503 − 1 0.097 0.48 0.96 1.53 0.17

1008 3 · 5 · 21004 − 1 0.21 1.16 2.84 4.21 0.07

1554 32 · 21551 − 1 1.19 2.85 6.49 10.5 1.53

2031 3 · 17 · 22026 − 1 1.68 8.34 11.3 21.3 0.70

4089 32 · 7 · 24084 − 1 15.6 52.8 53.5 122 0.41

Table 2. Timings in seconds for SageMath 10.5 PEGASIS implementation to evaluate
one group action at different prime sizes, measured on an Intel Core i5-1235U CPU
with maximal clock speed of 4.0 GHz. The last column indicates the number of ideal-
class rerandomizations required to find a solution in Step 1. These results are averaged
over 100 runs. Step 1 is the time used to solve the norm equation, Step 2 is the time
used to derive the kernel of the dimension 4 isogeny, and Step 3 is the time used to
compute the dimension 4 isogeny.

We conclude this section with a more detailed comparison with the other
available isogeny-based EGAs in the literature. The comparison is summarised
in Table 3. The timings for SCALLOP [21] were measured on an Intel i5-6440HQ
processor clocked at 3.5 GHz, while the timings for SCALLOP-HD [14] were
measured on an Intel Alder Lake CPU core clocked at 2.1 GHz, and the tim-
ings for PEARL-SCALLOP [3] were measured on an Intel i5-1038NG7 processor
clocked at 2.0 GHz. The timings for the two versions of KLaPoTi [50] were all
re-measured on the same hardware setup as the timings presented in Table 2.

PEGASIS is the first instantiation of an EGA at the 2000-bit and 4000-bit
security level. In fact, it is even the first time that the full CSIDH group action
can be computed at the 1000-bit level. However, as Table 3 shows, PEGASIS
also significantly outperforms all earlier works at their security levels. The closest
comparison comes with the Rust implementation of KLaPoTi. However, the fact
that KLaPoTi was able to achieve a speedup by two orders of magnitude simply
by switching from a high-level SageMath implementation to a low-level Rust
implementation is also very promising for PEGASIS. Under the assumption that
a comparable speedup would be possible for PEGASIS, we see that PEGASIS
gives a highly-practical EGA, even at the highest security levels.

One of the main reasons of this efficiency gain is that unlike all the other
EGA instantiations, we are able to use the orientation given by Frobenius. This
has three key benefits:
– Evaluating the orientation is very efficient,
– We do not need to represent, nor push forward the orientation,
– We can work over Fp .

The price to pay is the need to go up to dimension 4 to compute the action,
but as Table 2 shows, it is still reasonably efficient. We stress that our imple-
mentation is only a proof of concept, to explore whether level 4000 was feasible
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Paper Language Time (s)

Approx. prime size (bits)

500 1000 1500 2000 4000

SCALLOP [21]* C++ 35 750

SCALLOP-HD [14]* Sage 88 1140

PEARL-SCALLOP [3]* C++ 30 58 710

KLaPoTi [50]
Sage 207

Rust 1.95

PEGASIS (This work) Sage 1.53 4.21 10.5 21.3 121

Table 3. Comparison of PEGASIS and other effective group actions in the literature.
Timings in seconds of different implementations to evaluate one group action at dif-
ferent (rounded) prime sizes. The SCALLOP variants are starred because they were
measured on different hardware setups. The results of both KLaPoTi and PEGASIS
are averaged over 100 runs and measured on the same hardware.

in practice. In particular, we are missing many standard implementation tricks;
as a simple example, we work with affine coordinates instead of projective co-
ordinates. Despite this, our timings are very encouraging, and we hope a low
level optimised implementation could even be made comparable in efficiency to
a state-of-the-art implementation of CSIDH ran as a REGA, like in [11].

6.4 Further improvements

As described in Section 4.2, it is possible to force only one among u/gu and
v/gv to be a sum of squares, and perform the other isogeny in dimension 4.
Note that such 4-dimensional isogeny will have only half of the length of the
isogeny that we perform at the end, thus being twice as fast (at least, since the
isogeny computation is quasi-linear in its length). On the other hand, steps 1
and 2 would both become much faster. This approach hence becomes promising
as soon as the 4-dimensional isogeny computation has a cost comparable to step
2, which is the case for the 2000 and 4000 parameter (see Table 2). For such
parameters, we computed the first two steps of the algorithm, with B = {2, 3, 7}
in both cases; the results are reported in Table 4. We note that the number of
rerandomizations stays comparable whilst the total time for step 1 and step 2
notably decreases.

Estimating the cost of one u-isogeny in dimension 4 as half of the cost of
step 3 in Table 2, we expect to reach 21.3 seconds for the 2000 parameter and
106.2 seconds for the 4000. This approach is hence comparable to ours in the
former case, and even faster in the latter. We leave its implementation as future
work. On the other hand, doing both u and v using 4-dimensional isogenies is
less efficient at all security levels we considered.
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Prime (bits) Prime Time (s) Rerand.

Step 1 Step 2 Total

2031 3 · 17 · 22026 − 1 0.49 3.83 4.32 0.70

4089 32 · 7 · 24084 − 1 3.25 22.8 26.0 1.25

Table 4. Time taken to compute Step 1 and Step 2 when solving the norm equation
with single sum of squares, measured in wall-clock seconds. The last column gives the
number of rerandomizations needed. These results are averaged over 100 runs.
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A An introduction to efficient higher-dimensional isogeny
computation

In this section, we explain how higher-dimensional isogenies are computed with
the theta model. We use the algorithms introduced in [18] for SQIsignHD [19]
and the attacks against SIDH. In Appendix A.1, we first introduce some basic
theory on theta coordinates in a cryptographer-friendly way. We then briefly
explain how to change theta coordinates to obtain a system of theta coordinates
adapted to a 2e-isogeny, how such an isogeny is computed and how to obtain
theta coordinates from Montgomery (x : z)-coordinates on a product of Mont-
gomery elliptic curves. In Appendix A.2, we give more details on changes of
theta coordinates adapted to an isogeny obtained from Kani’s lemma and how
to decompose the codomain into a product.

A.1 Some theory on theta functions

We recall some basics on the theta model. We refer to [20, § 2.1] for a cryptogra-
pher friendly introduction. Let (A, λ) be a principally polarised abelian variety

of dimension g over an algebraically closed field k. The polarisation λ : A→ Â is
induced by an ample divisor D on A as follows λ = λD : A→ Â, x 7→ [t∗xD−D].
Without loss of generality, we can assume that D is symmetric [−1]∗D ∼ D.
Since λ is a principal polarisation, ker(λ) = {0}. We define the polarisation of
level n as λ ◦ [n] = λnD : x 7→ [t∗xnD − nD] whose kernel is ker(λ ◦ [n]) = A[n].

Theta-structures. Formally, a theta-stucture Θn of level n on (A, λ◦ [n]) is an
isomorphism between the Heisenberg group H(n) of level n and the theta-group
G(nD) of nD, Θn : G(nD) ∼→ H(n), that we do not define here. However, this
level of abstraction is not needed in the following. The reader only needs to know
that a theta structure Θn induces a system of coordinates (θi)i∈(Z/nZ)g (where
g = dim(A)) called theta-coordinates. They define a map into the projective
space A → Pn

g−1
k , x 7→ (θi(x))i∈(Z/nZ)g which is an embedding when n ≥ 3 [45,

p. 163] and induces an embedding of the Kummer variety A/± ↪−→ P2g−1
k when

n = 2 and A is not a product [8, Theorem 4.8.1]. In practice, we work in level
n = 2 so theta-coordinates represent points on the Kummer variety i.e. points
up to a sign.

A polarised abelian variety with a level n theta structure (A, λ ◦ [n], Θn) is
generally too much data to represent on a computer. Usually, we represent it by
its associated theta null point (θi(0))i∈(Z/nZ)g . When n = 2 we do not have a
guarantee that the theta null point fully determines (A, λ ◦ [n], Θn) . However,
this information is enough in practice to perform arithmetic computations on a
polarised abelian variety (A, λ ◦ [2]) that is neither a product nor 2-isogenous to
a product. These arithmetic operations include doubling x 7→ 2x and differential
addition x, y, x− y 7→ x+ y (see [53, Algorithm 4.4.10]).
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Change of theta-coordinates. A symmetric theta structure of level n is fully
determined by a symplectic basis of A[2n] [44, Remark 3, p. 319]. Such a basis
(S1, · · · , Sg, T1, · · · , Tg) of A[2n] satisfies:

∀1 ≤ j ≤ n, e2n(Si, Sj) = e2n(Ti, Tj) = 1 and e2n(Si, Tj) = ζδi,j ,

where e2n is the 2n-th Weil pairing and ζ ∈ k is a primitive 2n-th root of unity.
Such a basis is called a ζ-symplectic basis. In the following, we shall always
assume that theta structures are symmetric.

A change of symplectic basis induces a change of theta structure, hence a
change of theta coordinates. Namely, let Θn and Θ′

n be two theta-structures
and respectively induced by ζ-symplectic basis B and B′ of A[2n]. Let M ∈
Sp2g(Z/nZ) be the change of basis matrix from B to B′. Let (θi)i and (θ′i)i be
the systems of theta-coordinates associated to Θn and Θ′

n respectively. Then,
there is an explicit matrix N(M, ζ) ∈ GLn(k) such that (θ′i)i = N(M, ζ) · (θi)i
that can be computed as follows.

Theorem A.1. [18, Theorem 12] Let us write the symplectic change of basis
matrix from B to B′ by g × g blocks:

M :=

(
A C
B D

)
Then, there exists i0 ∈ (Z/nZ)g and λ ∈ k∗ such that for all i ∈ (Z/nZ)g,

θ′i = λ
∑

j∈(Z/nZ)g
ζ⟨i|j⟩−⟨Ai+Cj+2i0|Bi+Dj⟩θAi+Cj+i0 ,

where ⟨i|j⟩ :=
∑g
k=1 ikjk is the usual scalar product. We can choose any value

of i0 ∈ (Z/nZ)g such that∑
j∈(Z/nZ)g

ζ−⟨Cj+2i0|Dj⟩θi0+Cj ̸= 0.

Isogeny computations. Let F : A → B be a d-isogeny. If
B = (S1, · · · , Sg, T1, · · · , Tg) is a ζ-symplectic basis of A[4d]
adapted to F i.e. such that ker(F ) = [4]⟨T1, · · · , Tg⟩, then C =
([d]F (S1), · · · , [d]F (Sg), F (T1), · · · , F (Tg)) is a ζd-symplectic basis of B[4]
[19, Theorem 56]. In particular, it means that if we work with theta coordinates
(θAi )i∈(Z/2Z)g induced by the symmetric theta structure associated to [d]B on
the domain, then the codomain theta coordinates (θBi )i∈(Z/2Z)g will be induced
by the symmetric theta structure associated to C .

When d = 2, [18, § 4.2] provides formulas to compute the codomain theta null
point (θBi (0))i∈(Z/2Z)g from the theta coordinates of T1, · · · , Tg. The codomain
theta null point (θBi (0))i is then sufficient to evaluate F i.e. to compute
(θBi (F (x)))i given (θBi (x))i for all x ∈ A(k). Hence the codomain theta null
point not only represents the codomain B but also the 2-isogeny F itself. When
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we say that we compute F , we usually say that we compute its codomain theta
null point (and relevant information trivially derived from it). Note the main dif-
ference with Vélu’s formulas: 8-torsion points T1, · · · , Tg are necessary for this
computation; 4 or 2-torsion points would not be sufficient.

When d = 2e, and F = fe ◦ · · · ◦ f1 is a chain of 2-isogenies, a choice of
symplectic basis B adapted to F (i.e. such that ker(F ) = [4]⟨T1, · · · , Tg⟩) in-
duces a choice of level 2 theta-structure on the codomain of fi associated to
[2e−i]fi ◦ · · · ◦ f1([2i]S1, · · · , [2i]Sg, T1, · · · , Tg) for all i ∈ J1 ; eK, so that we can
propagate the formulas from [18, § 4.2] along the chain.

When F has been obtained via Kani’s lemma, it is defined on a product of
abelian varieties (e.g. a product of elliptic curves) so the first steps of the chain
are gluing isogenies f : A1 × A2 → B that need to be handled with extra care
since the formulas are different to compute them. Splitting isogenies along the
chain f : A → B1 × B2 also require some attention because point duplications
x 7→ 2x are more difficult on their domain and codomain than generic ones. In
particular, we need to detect these gluings and splittings in advance. This will
be the main focus of Appendix B in our special case of interest (when F is the
isogeny from Section 5.3).

As in dimension 1, divide and conquer strategies can be applied to minimize
the number of duplications and isogeny evaluations required to compute a 2-
isogeny chain F = fe ◦ · · · ◦ f1. These strategies can also be adapted to take into
account the specific constraints imposed by gluing and splitting isogenies and
their relative cost. With 4-dimensional computations in mind, more details on
these strategies can be found in [18, Appendix E].

Product theta-structures. When we compute isogenies obtained via Kani’s
lemma, we start and terminate on a product of abelian varieties which are natu-
rally equiped with a product theta-structure. If A = A1×A2 and (A1, λ1), (A2, λ2)
are principally polarised abelian varieties, we consider the product polarisation
λ := λ1 × λ2 : (x, y) 7→ (λ1(x), λ2(x)). If Θ

Ai
n is a level n theta-structure on

(Ai, λi ◦ [n]) induced by a ζ-symplectic basis Bi = (S
(i)
1 , · · · , S(i)

gi , T
(i)
1 , · · · , T (i)

gi )
of A[2n] and of associated system of theta-coordinates (θAi

j )j∈(Z/nZ)gi for i ∈
{1, 2}, then we can define the product theta-structure Θn := ΘA1

n × ΘA2
n on

(A, λ) as follows. It is the level n theta-structure induced by the ζ-symplectic
basis of A[2n]:

B = B1 × B2 := ((S
(1)
1 , 0), · · · , (S(1)

g1 , 0), (0, S
(2)
1 ), · · · , (0, S(2)

g2 ),

(T
(1)
1 , 0), · · · , (T (1)

g1 , 0), (0, T
(2)
1 ), · · · , (0, T (2)

g2 )). (16)

The theta-coordinates (θAj )j∈(Z/nZ)g1+g2 associated to Θn = ΘA1
n ×ΘA2

n are given
as follows:

∀(x, y) ∈ A1(k)×A2(k), (j1, j2) ∈ (Z/nZ)g1+g2 , θAj1,j2(x, y) = θA1
j1

(x)θA2
j2

(y).
(17)
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In the context of a 2e-isogeny computation F : A→ B (n = 2e+2), we usually
start with a product theta-structure induced by B and we have to compute a
change of theta-coordinates induced by a change of symplectic basis from B to
B′ = (S1, · · · , Sg, T1, · · · , Tg) such that ker(F ) = [4]⟨T1, · · · , Tg⟩.

The codomain is also often a product B = B1 × B2 but the level
2 theta-structure on the codomain induced by F is associated to C =
([2e]F (S1), · · · , [2e]F (Sg), F (T1), · · · , F (Tg)) which is not a product theta-
structure. A change of theta-coordinates is necessary to recover the product
theta-coordinates on B. Once this has been done, we obtain the theta-null point
of the product (θBj1,j2(0))j1,j2 = (θB1

j1
(0) · θB2

j2
(0))j1,j2 from which we can infer

the theta-null points (θBi
j (0))j of each component Bi, which can then be used to

determine the polarised abelian variety (Bi, λBi
◦ [2]). In Appendix A.2, we shall

see how to compute the necessary change of theta-coordinates for this splitting
operation when F is obtained from Kani’s lemma and apply this method to our
case of interest (when F is the isogeny from Section 5.3) in Appendix B.4.

Theta-structures on Montgomery curves. In our context, we work with
isogenies between products of elliptic curves. These elliptic curves are equipped
with a Montgomery model over Fp2 (and even Fp for CSIDH) so we need to con-
vert this model into a level 2 theta model. Conversely, we also need to translate
a level 2 theta model obtained after the splitting operation mentioned above
into a Montgomery model. The focus of this paragraph will be to explain these
conversions.

If E is a Montgomery curve, then Montgomery (x : z)-coordinates and
level 2 theta coordinates (θ0 : θ1) both induce Kummer lines i.e. isomorphisms
E/± ∼→ P1. Hence, a change of coordinates between theta and Montgomery is a
homography. In [55, Chapter 7, Appendix A], formulas were introduced to ex-
press such a homography when the theta structure is symmetric and associated
to a 4-torsion basis of specific shape.

Let E be an elliptic curve in the Montgomery model and (P,Q) be a basis of
E[4] such that Q := (−1 : 1) (in (x : z) coordinates). Let us write P := (r : s).
Then, we may define a level 2 theta-structure on E with theta-null point (a :
b) := (r+ s : r− s). The conversion map from Montgomery to theta coordinates
is then (x : z) 7→ (a(x− z) : b(x+ z)).

Conversely, if (a : b) is the theta-null point, the conversion map from theta to
Montgomery coordinates is (θ0, θ1) 7→ (aθ1 + bθ0 : aθ1 − bθ0). Via this map, the
2-torsion theta points (b : a), (a : −b) and (b : −a) are mapped to the 2-torsion
Montgomery points (a2+ b2 : a2− b2), (0 : 1) and (a2− b2 : a2+ b2) respectively.
Identifying the 2-torsion, we can then obtain the Montgomery equation of E:

By2 = x(x− α)(x− 1/α) = x3 +Ax2 + x,

with α := (a2 + b2)/(a2 − b2) and A := −(α+ 1/α) = −2(a4 + b4)/(a4 − b4). To
identify B, we need to know a full point of 4-torsion (x : y : z) on E. This will
be important in our context to distinguish the result of the CSIDH class group
action Ea from its quadratic twist over Fp (see Appendix B.4).
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As we have seen previously, a fixed Montgomery curve E has several level 2
theta structures related by symplectic matrices between 4-torsion basis. Using
Theorem A.1, we can then obtain theta structures which are not induced by a
4-torsion basis (P,Q) with (x(Q) : z(Q)) ̸= (−1 : 1). Conversely, from different
theta structures on E, we obtain 6 different possible Montgomery coefficients A
from the conversion formula (θ0, θ1) 7→ (aθ1 + bθ0 : aθ1 − bθ0).

Proposition A.1. Let (a : b) be a level 2 theta null point on a Montgomery
curve E associated to a symmetric theta structure. Then all possible Montgomery
coefficients of E are of the form:

− 2
a4 + b4

a4 − b4
, −a

4 + 6a2b2 + b4

2(a3b+ b3a)
, ζ4

a4 − 6a2b2 + b4

2(a3b− b3a)
,

2
a4 + b4

a4 − b4
,

a4 + 6a2b2 + b4

2(a3b+ b3a)
, −ζ4

a4 − 6a2b2 + b4

2(a3b− b3a)
.

where ζ4 is a root of −1. They correspond respectively to theta null points:

(a : b), (a+ b : a− b), (a+ ζ4b : a− ζ4b),

(b : a), (a− b : a+ b), (a− ζ4b : a+ ζ4b).

Proof. Let (P,Q) be a basis of E[4] inducing a symmetric theta structure of
theta null point (a : b) and let ζ4 := e4(P,Q). Then, enumerating all symplectic
matrices of Sp2(Z/4Z), we obtain all ζ4-symplectic basis (P ′, Q′) of E[4] inducing
symmetric level 2 theta structures of theta null points (a′ : b′) obtained from
(a : b) by Theorem A.1. We can then compute all corresponding Montgomery

coefficients A′ := −2(a′
4
+ b′

4
)/(a′

4 − b′
4
).

A.2 Theta structures on the domain and codomain of an isogeny
obtained from Kani’s lemma

In the following lemma, we give an explicit description of a symplectic basis
adapted to an isogeny obtained from Kani’s lemma (in point (i)). By Theo-
rem A.1, this can be used to compute a change of theta coordinates from product
theta coordinates on the domain before starting the isogeny computation. We
also describe a symplectic basis associated to a product level 2 theta structure
on the codomain (in point (ii)) and its relation with the symplectic basis natu-
rally induced by F via [19, Theorem 56] (in point (iii)). Using Theorem A.1, the
resulting symplectic change of basis matrix can be used to compute the product
theta null point and product theta coordinates on the codomain. In particular,
we can ”extract” components of the codomain.

Lemma A.1. Let a and b be odd and coprime integers and d := a+ b not divis-
ible by char(k). Consider an (a, b)-isogeny diamond (as defined in Lemma 2.3)
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between PPAVs of dimension g:

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO

and the associated Kani d-isogeny:

F :=

(
φ ψ̃′

−ψ φ̃′

)
: A×B′ → B ×A′.

Let (x1, · · · , xg, y1, · · · , yg) be a ζ-symplectic basis of B[4d]. Let α and β be
modular inverses of a and b modulo 4d respectively.

(i) For all i ∈ J1 ; gK, we denote:

Si := ([−α]φ̃(yi), 0), Si+g := (0, [β]ψ′(xi)),

Ti := (φ̃(xi), ψ
′(xi)), Ti+g := ([1− αd]φ̃(yi), ψ

′(yi)).

Then (S1, · · · , S2g, T1, · · · , T2g) is a ζ-symplectic basis of (A×B′)[4d] adapted
to F i.e. such that ker(F ) = [4]⟨T1, · · · , T2g⟩.

(ii) For all i ∈ J1 ; gK, we denote:

Ui := ([d]xi, 0), Ui+g := (0, [d]ψ ◦ φ̃(xi)),

Vi := ([d]yi, 0), Vi+g := (0, [dαβ]ψ ◦ φ̃(yi)).

Then (U1, · · · , U2g, V1, · · · , V2g) is a product ζd-symplectic basis of (B ×
A′)[4].

(iii) The ζd-symplectic basis ([d]F (S1), · · · , [d]F (S2g), F (T1), · · · , F (T2g)) of
(B × A′)[4] naturally induced by F via [19, Theorem 56] is related to
(U1, · · · , U2g, V1, · · · , V2g) by the following formulas. For all i ∈ J1 ; gK:

[d]F (Si) = −Vi + [b]Vi+g, [d]F (Si+g) = Ui + [β]Ui+g,

F (Ti) = Ui, F (Ti+g) = [b]Vi+g,

so that:
Ui = F (Ti), Ui+g = [bd]F (Si+g)− [b]F (Ti),

Vi = F (Ti+g)− [d]F (Si), Vi+g = [β]F (Ti+g).

Proof. (i) For all principally polarised abelian varieties C and D, we denote λC
the principal polarisation on C and λC×λD the product (principal) polarisation
on C×D. Then, since (x1, · · · , xg, y1, · · · , yg) is a ζ-symplectic basis of A[4d], we
have the following results for the 4d-th Weil-pairing associated to the product
polarisation λA × λB′ :



PEGASIS: Practical Effective Class Group Action 43

e
λA×λB′
4d (Si, Sj) = eλA

4d ([−α]φ̃(yi), [−α]φ̃(yj)) = eλA

4d (yi, yj)
aα2

= 1

e
λA×λB′
4d (Si, Sj+g) = eλA

4d ([−α]φ̃(yi), 0)e
λB′
4d (0, [β]ψ′(xj)) = 1

e
λA×λB′
4d (Ti, Tj) = eλA

4d (φ̃(xi), φ̃(xj))e
λB′
4d (ψ′(xi), ψ

′(xj)) = eλA

4d (xi, xj)
a+b = 1

e
λA×λB′
4d (Ti, Tj+g) = eλA

4d (φ̃(xi), [1− αd]φ̃(yj))e
λB′
4d (ψ′(xi), ψ

′(yj))

= eλA

4d (xi, yj)
a(1−αd)+b = eλA

4d (xi, yj)
0 = 1

e
λA×λB′
4d (Si, Tj) = eλA

4d ([−α]φ̃(yi), φ̃(xj))e
λB′
4d (0, ψ′(xj)) = eλA

4d (xj , yi)
aα = ζδi,j

e
λA×λB′
4d (Si, Tj+g) = eλA

4d ([−α]φ̃(yi), [1− αd]φ̃(yj))e
λB′
4d (0, ψ′(yj))

= eλA

4d (yi, yj)
−(1−αd)α = 1

e
λA×λB′
4d (Si+g, Tj) = eλA

4d (0, φ̃(xj))e
λB′
4d ([β]ψ′(xi), ψ

′(xj)) = eλA

4d (xi, xj)
bβ = 1

e
λA×λB′
4d (Si+g, Tj+g) = eλA

4d (0, [1− αd]φ̃(yj))e
λB′
4d ([β]ψ′(xi), ψ

′(yj))

= eλA

4d (xi, yj)
bβ = eλA

4d (xi, yj) = ζδi,j ,

for all i, j ∈ J1 ; gK. Hence, (S1, · · · , S2g, T1, · · · , T2g) is a ζ-symplectic basis of
(A × B′)[4d]. Since ([4]x1, · · · , [4]xg, [4]x1, · · · , [4]yg) generates A[d], we clearly
have by Lemma 2.3:

[4]⟨T1, · · · , T2g⟩ = {([a]x, ψ′ ◦ φ(x)) | x ∈ A[d]} = ker(F ).

This proves (i).
(ii) B := (U1, · · · , U2g, V1, · · · , V2g) is the product B1 × B2 with

B1 := ([d]x1, · · · , [d]xg, [d]y1, · · · , [d]yg)

B2 := ([d]ψ ◦ φ̃(x1), · · · , [d]ψ ◦ φ̃(xg), [dαβ]ψ ◦ φ̃(y1), · · · , [dαβ]ψ ◦ φ̃(yg)).

And we have for all i, j ∈ J1 ; gK:

eλB
4 ([d]xi, [d]xj) = eλB

4d (xi, xj)
d = 1
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eλB
4 ([d]yi, [d]yj) = eλB

4d (yi, yj)
d = 1

eλB
4 ([d]xi, [d]yj) = eλB

4d (xi, yj)
d = ζdδi,j ,

so B1 is a ζd-symplectic basis of B[4]. Similarly, we verify that B2 is a ζd-
symplectic basis of A′[4]. It follows that B = B1×B2 is a product ζd-symplectic
basis of (B ×A′)[4], as desired.

(iii) The fact that ([d]F (S1), · · · , [d]F (S2g), F (T1), · · · , F (T2g)) is a ζd-
symplectic basis of (B × A′)[4] follows from [19, Theorem 56]. It remains to
compute for all i ∈ J1 ; gK:

[d]F (Si) = [d]F ([−α]φ̃(yi), 0) = ([−dα]φ ◦ φ̃(yi), [dα]ψ ◦ φ̃(yi))
= ([−daα]yi, [dα]ψ ◦ φ̃(yi)) = −Vi + [b]Vi+g

[d]F (Si+g) = [d]F ((0, [β]ψ′(xi)) = ([dβ]ψ̃′ ◦ ψ′(xi), [dβ]φ̃′ ◦ ψ′(xi))

= ([dβb]xi, [dβ]ψ ◦ φ̃(xi)) = ([d]xi, [dβ]ψ ◦ φ̃(xi)) = Ui + [β]Ui+g

F (Ti) = F (φ̃(xi), ψ
′(xi)) = (φ ◦ φ̃(xi) + ψ̃′ ◦ ψ′(xi),−ψ ◦ φ̃(xi) + φ̃′ ◦ ψ′(xi))

= ([a+ b]xi,−ψ ◦ φ̃(xi) + ψ ◦ φ̃(xi)) = ([d]xi, 0) = Ui

F (Ti+g) = F ([1− αd]φ̃(yi), ψ
′(yi))

= ([1− αd]φ ◦ φ̃(yi) + ψ̃′ ◦ ψ′(yi),−[1− αd]ψ ◦ φ̃(yi) + φ̃′ ◦ ψ′(yi))

= ([a(1− αd) + b]yi, [αd− 1 + 1]ψ ◦ φ̃(yi)) = (0, [d]ψ ◦ φ̃(yi)) = [b]Vi+g,

where we used twice the fact that ψ′ ◦ φ = φ′ ◦ ψ implies that φ̃′ ◦ ψ′ = ψ ◦ φ̃.
The inverse equations:

Ui = F (Ti), Ui+g = [bd]F (Si+g)− [b]F (Ti),

Vi = F (Ti+g)− [d]F (Si), Vi+g = [β]F (Ti+g),

follow immediately. This completes the proof.

B Implementing the 4-dimensional isogeny computation
for the CSIDH group action in the simplest case

In this Section, we explain how to compute the 4-dimensional isogeny F : E2
u ×

E2
v → E2

a×E′2 from Section 5.3. We compute F as a chain of e 2-isogenies, using
the algorithms from [18, § 4]. The general approach is very similar to SQIsignHD
verification and SIDH attacks described in [18, § 5 and Appendix B].
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B.1 Where are the gluings and splittings?

Because the formulas for gluing isogenies are different, we need to handle gluings
with special care and locate them in advance in the 2-isogeny chain. We have
the following result, very similar to [18, Lemma 23]:

Lemma B.1. Without loss of generality, we can assume that 2|yu and 2|yv. Let
m := v2(xvyu − xuyv). Then F is of the form F = G ◦ Fm+1 ◦ Fm ◦ · · · ◦ F1,
where

E2
u × E2

v A2
1 · · · A2

m−1 A2
m B

F1 F2 Fm−1 Fm Fm+1

is a chain of 2-isogenies, the Ai are principally polarised abelian surfaces and B
is a principally polarised abelian variety of dimension 4. For all, i ∈ J2 ; mK, Fi
is a diagonal isogeny Diag(fi, fi) with fi : Ai−1 → Ai, a 2-dimensional 2-isogeny
and F1 : (R1, S1, R2, S2) 7→ (f1(R1, R2), f1(S1, S2)) with f1 : Eu × Ev → A1, a
gluing 2-isogeny.

Besides, the 2-dimensional 2m-isogeny Φ := fm ◦ · · · ◦ f1 has kernel:

ker(Φ) = {([N1xu]φu(P ), [gu(xuxv + yuyv)]φv ◦ φ̂ck ◦ φbk
(P )) | P ∈ E1[2

m]}.

Proof. By Eq. (15), we have:

ker(F ) = {([uN1]φu(P ), [uN1]φu(Q),

[gu]Mv ·MT
u (φv ◦ φ̂ck ◦ φbk

(P ), φv ◦ φ̂ck ◦ φbk
(Q))) | P,Q ∈ Eu[2

e]},

so the first m isogenies of the 2-isogeny chain have kernel:

ker(Fm ◦ · · · ◦ F1) = [2e−m] ker(F )

= {([uN1]φu(P ), [uN1]φu(Q),

[gu(xuxv + yuyv)]φv ◦ φ̂ck ◦ φbk
(P )

+ [gu(xvyu − xuyv)]φv ◦ φ̂ck ◦ φbk
(Q),

− [gu(xvyu − xuyv)]φv ◦ φ̂ck ◦ φbk
(P )

+ [gu(xuxv + yuyv)]φv ◦ φ̂ck ◦ φbk
(Q)) | P,Q ∈ E1[2

m]}
= S(K ×K),

with S : E2
u × E2

v → (Eu × Ev)
2, (R1, S1, R2, S2) 7→ (R1, R2, S1, S2) and

K := {([N1xu]φu(P ), [gu(xuxv + yuyv)]φv ◦ φ̂ck ◦ φbk
(P )) | P ∈ E1[2

m]}.

It follows that (Fm ◦ · · · ◦ F1) ◦ S−1 is a diagonal 2m-isogeny

Diag(Φ,Φ) : (Eu × Ev)
2 → A2

m

with ker(Φ) = K, so the Fi and F have the desired form.
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Locating splittings in the isogeny chain computation is also important. In-
deed, on abelian varieties 2-isogenous to a product of abelian varieties, the
generic doubling procedure [18, Algorithm 8] may fail because of zero divisions.
Doublings are involved to obtain kernel information at every step of the isogeny
chain but we have some flexibility on the abelian variety where these doublings
take place along the chain, depending on the computational strategy we use. As
in [18, Appendix E], we use computational strategies that do not involve dou-
blings on codomains of splitting isogenies. Using the structure of the polarised
dual F̃ , we obtain the

Lemma B.2. Assume that 2|yu, yv and let m := v2(xvyu − xuyv) as in
Lemma B.1. Then F is of the form F = Fe ◦ · · ·Fe−m ◦G′, where

B′ A2
e−m A2

e−m+1 · · · A2
e−1 E2

a × (E′)2
Fe−m Fe−m+1 Fe−m+2 Fe−m+2 Fe

is a chain of 2-isogenies, the Ai are principally polarised abelian surfaces and
B′ is a principally polarised abelian variety of dimension 4. For all, i ∈
Je−m+ 1 ; eK, Fi is a diagonal isogeny Diag(fi, fi) with fi : Ai−1 → Ai, a
2-dimensional 2-isogeny and Fe := S′ ◦ Diag(fe, fe) with f1 : Ae−1 → Ea × E′,

a splitting 2-isogeny and S′ : (Ea × E′)2 → E2
a × E′2, (R1, R2, S1, S2) 7→

(R1, S1, R2, S2).

Proof. The polarised dual F̃ : E2
a × (E′)2 → E2

u × E2
v is given by:

F̃ =

(
Φu ◦ Φ̃1 −Φ′

v ◦ Φ̃′
2

−Φv ◦ Φ̃2 Φ′
u ◦ Φ̃′

1

)
and its kernel is:

ker(F̃ ) = {([uN1]P, [uN1]Q,−Φ′
2 ◦ Φ̃′

v ◦ Φu ◦ Φ̃1(P,Q)) | P,Q ∈ Ea[2
e]}

= {([uN1]P, [uN1]Q,−MT
v ·Mu(φ

′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(P ),

φ′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(Q))) | P,Q ∈ Ea[2
e]}

= {([uN1]φu(P ), [uN1]φu(Q),

− [xuxv + yuyv]φ
′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(P )

− [xuyv − xvyu]φ
′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(Q),

[xuyv − xvyu]φ
′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(P )

− [xuxv + yuyv]φ
′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(Q)) | P,Q ∈ Ea[2
e]}

It follows that
ker(F̃ )[2m] = S′(K ′ ×K ′),

with:

K ′ = {([uN1]P,−[xuxv + yuyv]φ
′
2 ◦ φ̂′

v ◦ φu ◦ φ̂1(P )) | P ∈ Ea[2
m]}.

We then easily conclude that F has the desired form.
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By Lemma B.1, to compute F , we first have to compute a 2-dimensional 2-
isogeny chain Φ := fm ◦ · · · ◦ f1 : Eu×Ev → Am, then a 4-dimensional gluing of
abelian surfaces Fm+1 : A2

m → B and e−m−1 generic 4-dimensional 2-isogenies.
Except for the first m steps and splitting at the end, we do not have a way of
detecting products of abelian varieties located elsewhere in the 2-isogeny chain.
However, they can appear with very low probability Õ(1/p) so we can assume
there are none and treat the e−m− 1 last 2-isogenies as generic ones.

Hence, we proceed as follows to compute F :

1. We compute the 2-dimensional isogeny Φ := fm ◦ · · · ◦ f1 : Eu × Ev → Am
(Appendix B.2).

2. We compute the gluing isogeny Fm+1 : A2
m → B (Appendix B.3).

3. We compute the last e−m− 1 2-isogenies of the chain as generic isogenies
with a computational strategy avoiding doublings m steps before the end,
as in [18, Algorithm 21].

4. We compute a change of theta-coordinates on the codomain E2
a × E′2 to

obtain the product theta-structure and we retrieve Ea (Appendix B.4).

In the following, we assume we are given the following inputs defined in
Section 5.3:

– The points Pu, Qu, Pv, Qv;
– The integers N1, N2, gu, xu, yu, gv, xv, yv, e obtained from a solution of

Eq. (11);

where (Pu, Qu) and (Pv, Qv) are images of a basis (P,Q) of E1[2
e+2] via the

gu-isogeny φu : E1 → Eu and the gvN1N2-isogeny φv ◦ φ̂ck ◦ φbk
: E1 → Ev.

In the following, we denote ζ := e2e+2(P,Q), so that e2e+2(Pu, Qu) = ζgu and
e2e+2(Pv, Qv) = ζgvN1N2 .

B.2 The 2-dimensional part

When computing the gluing isogeny f1 : Eu × Ev → A1, we first convert the
Montgomery (x : z)-coordinates on Eu × Ev into product theta coordinates.
Let (Ru, Su) and (Rv, Sv) be basis of Eu[4] and Ev[4] respectively such that
x(Su) = x(Sv) = −1 and e4(Ru, Su) = e4(Rv, Sv) = ζ2

e

. By Appendix A.1,
we can then convert Montgomery (x : z)-coordinates on Eu and Ev into level 2
theta coordinates associated to symmetric theta structures induced by (Ru, Su)
and (Rv, Sv) respectively. Then, the resulting product level 2 theta structure on
Eu × Ev is induced by the ζ2

e

-symplectic basis of (Eu × Ev)[4]:

B0 := ((Ru, 0), (0, Rv), (Su, 0), (0, Sv)).

However, B0 is not adapted to f1 in the sense of Appendix A.1, so we need
to find a (non-product) symplectic basis adapted to f1 and to compute the
associated change of theta coordinates with Theorem A.1. We can then compute
the gluing isogeny f1 in level 2 theta coordinates using [20, Algorithm 8] and
generic isogenies f2, · · · , fm using [20, Algorithm 7].
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Consider the intermediate ζ2
e

-symplectic basis B1 of (Eu × Ev)[4], where:

B1 := (([2e]Pu, 0), (0, [2
e]Pv), ([2

eγu]Qu, 0), (0, [2
eγvη1η2]Qv)),

and γu, γv, η1, η2 are inverses of gu, gv, N1, N2 modulo 2e+2. Given the expression
of the kernel of Φ := fm ◦ · · · ◦ f1 from Lemma B.1, we can easily express the
symplectic change of basis matrix M1 from B1 to [2m]B2, where B2 is a ζ2

e−m

-
symplectic basis of (Eu × Ev)[2

m+2] adapted to Φ (given by Lemma B.3). This
matrix M1 is described in Lemma B.4. We can also express the change of basis
from B0 to B1: 

au 0 cu 0
0 av 0 cv
bu 0 du 0
0 bv 0 dv

 ,

where [2e]Pu = [au]Ru + [bu]Su, [2
eγu]Qu = [cu]Ru + [du]Su, [2

e]Pv = [av]Rv +
[bv]Sv and [2eγv]Qv = [cv]Rv + [dv]Sv. The change of basis from B0 to [2m]B2

is then M2 := M0 ·M1 to which we can directly apply Theorem A.1 to obtain
the desired change of theta coordinates.

Lemma B.3. We keep the notations from Appendix B.1 and Lemma B.1. Let
ζ := e2e+1(P,Q), suv := xuxv+yuyv, δuv := xvyu−xuyv, η1, η2, γu, γv, µ, σuv be
inverses of N1, N2, gu, gv, u = gu(x

2
u + y2u), suv modulo 2m+2 respectively. Then,

B2 := (J1, J2,K1,K2) given by:

J1 := ([−2e−mη1µγu]Qu, 0), J2 := (0, [2e−mγuγvη1η2σuv]Pv)

K1 := ([2e−mN1u]Pu, [2
e−mgusuv]Pv),

K2 := ([2e−m(N1u+ gugvµN2δ
2
uv)]Qu, [2

e−mgusuv]Qv)

is a ζ2
e−m

-symplectic basis of (Eu × Ev)[2
m+2] adapted to Φ := fm ◦ · · · ◦ f1 :

Eu × Ev → Am i.e. such that ker(Φ) = ⟨[4]K1, [4]K2⟩.

Proof. By Lemma B.1, we have:

ker(Φ) = ⟨([2e+2−mN1u]Pu, [2
e+2−mgusuv]Pv),

([2e+2−mN1u]Qu, [2
e+2−mgusuv]Qv)⟩,

so that ker(Φ) = ⟨[4]K1, [4]K2⟩ because 2e+2−mδ2uv ≡ 0 mod 2e+2.
Besides, we clearly have

e2m+2(J1, J2) = e2m+2(J1,K2) = e2m+2(J2,K1) = 1

and

e2m+2(K1,K2) = e2m+2(([2e−mN1u]Pu, [2
e−mgusuv]Pv),

([2e−m(N1u+ gugvµN2δ
2
uv)]Qu, [2

e−mgusuv]Qv))

= e2m+2([2e−m]Pu, [2
e−m]Qu)

N1u(N1u+gugvµN2δ
2
uv)
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· e2m+2([2e−m]Pv, [2
e−m]Qv)

g2us
2
uv

= e2e+2(Pu, Qu)
2e−mN1u(N1u+gugvµN2δ

2
uv)

· e2e+2(Pv, Qv)
2e−mg2us

2
uv

= e2e+2(P,Q)2
e−m(guN1u(N1u+gugvµN2δ

2
uv)+gvN1N2g

2
us

2
uv)

= ζ2
e−m(guN

2
1u

2+gvN1N2g
2
u(δ

2
uv+s

2
uv))

= ζ2
e−m(guN

2
1u

2+gvN1N2g
2
u(x

2
u+y

2
u)(x

2
v+y

2
v))

= ζ2
e−mguuN1(uN1+vN2) = ζ2

2e−m

= 1

Indeed, Eq. (11) implies that 2m ≤ |δuv| ≤ x2u+ y2u+x2v + y2v ≤ u+ v = O(2e/2),
so that m = O(e/2) and 22e−m ≡ 0 mod 2e+2. Finally,

e2m+2(J1,K1) = e2m+2(([−2e−mη1µγu]Qu, 0), ([2
e−mN1u]Pu, [2

e−mgusuv]Pv))

= e2e+2(Qu, Pu)
−2e−mη1µγuN1u = e2e+2(Pu, Qu)

2e−mγu

= e2e+2(P,Q)2
e−mγugu = ζ2

e−m

,

and

e2m+2(J2,K2) = e2m+2((0, [2e−mγuγvη1η2σuv]Pv),

([2e−m(N1u+ gugvµN2δ
2
uv)]Qu, [2

e−mgusuv]Qv))

= e2e+2(Pv, Qv)
2e−mγuγvη1η2σuvgusuv

= e2e+2(P,Q)2
e−mgvN1N2γuγvη1η2σuvgusuv

= ζ2
e−m

,

so (J1, J2,K1,K2) is indeed a ζ2
e−m

-symplectic basis of (Eu × Ev)[2
m+2].

Lemma B.4. The change of basis matrix from B1 to [2m]B2 is:

M1 :=


0 0 N1u 0
0 γuγvη1η2σuv gusuv 0

−η1µ 0 0 guN1u
0 0 0 gugvN1N2suv

 .

Proof. It follows immediately form Lemma B.3 and the fact that m ≥ 1 so that
4|δ2uv.

B.3 The 4-dimensional gluing

LetH := Fm◦· · ·◦F1 : E2
u×E2

v → A2
m as in Lemma B.1. SinceH = Diag(Φ,Φ)◦S

with S : (R1, S1, R2, S2) 7→ (R1, R2, S1, S2), if we assume we have computed Φ
in Appendix B.2, we can evaluate H on any point. Images of H are expressed
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in product level 2 theta coordinates on A2
m, where the theta structure on Am is

associated to the ζ2
e

-symplectic basis of Am[4] induced by Φ, and given by:

C0 := ([2m]Φ(J1), [2
m]Φ(J2), Φ(K1), Φ(K2)).

Hence, the product theta structure on A2
m is induced by C0 × C0, as defined in

Eq. (16).
In general, this basis is not adapted to Fm+1 : A2

m → B. Such a basis is given
by:

C1 := ([2e]H(S1), · · · , [2e]H(S4), [2
e−m]H(T1), · · · , [2e−m]H(T4)),

where C := (S1, · · · , S4, T1, · · · , T4) is a ζ-symplectic basis of (E2
u ×

E2
v)[2

e+2] adapted to F . Applying Lemma A.1 to (x1, x2, y1, y2) :=
((φbk

(P ), 0), (0, φbk
(P )), ([η1]φbk

(Q), 0), (0, [η1]φbk
(Q))), we obtain:

S1 := ([−µη1xu]Qu, [−µη1yu]Qu, 0, 0), S2 := ([µη1yu]Qu, [−µη1xu]Qu, 0, 0),

S3 := (0, 0, [νη2xv]Pv, [νη2yv]Pv), S4 := (0, 0, [−νη2yv]Pv, [νη2xv]Pv),

T1 := ([N1xu]Pu, [N1yu]Pu, [xv]Pv, [yv]Pv),

T2 := ([−N1yu]Pu, [N1xu]Pu, [−yv]Pv, [xv]Pv),

T3 := ([(1− 2eµη1)xu]Qu, [(1− 2eµη1)yu]Qu, [η1xv]Qv, [η1yv]Qv),

T4 := ([−(1− 2eµη1)yu]Qu, [(1− 2eµη1)xu]Qu, [−η1yv]Qv, [η1xv]Qv),

where µ, ν, η1, η2 are inverses of u, v,N1, N2 modulo 2e+2 respectively.
To compute Fm+1, we need to compute the symplectic change of basis from

C0×C0 to C1 and the associated change of theta coordinates. We can then apply
the algorithms from [18, § 4.3] to compute Fm+1 with level 2 theta coordinates.

Lemma B.5. The change of basis matrix from C0 × C0 to C1 is

M3 :=



guxu −guyu 0 0 0 0 µ2 µ3

0 0 λxv −λyv µ1yu µ1xu 0 0
guyu guxu 0 0 0 0 −µ3 µ2

0 0 λyv λxv −µ1xu µ1yu 0 0
0 0 0 0 µxu −µyu 0 0
0 0 0 0 0 0 η1xvγuσuv −η1yvγuσuv
0 0 0 0 µyu µxu 0 0
0 0 0 0 0 0 η1yvγuσuv η1xvγuσuv


,

where λ := νgugvN1suv, µ1 := µg2ugvsuvN1N2δuv/2
m,

µ2 :=
δuv
2m

guσuv(N1uyu + gvxvN2δuv) and

µ3 :=
δuv
2m

guσuv(N1uxu − gvyvN2δuv).
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Proof. We have:

[2e]H(S1) = (Φ([−2eµη1xu]Qu, 0), Φ([−2eµη1yu]Qu, 0))

= ([guxu]Φ([−2eη1µγu]Qu, 0), [guyu]Φ([−2eη1µγu]Qu, 0))

= ([guxu][2
m]Φ(J1), [guyu][2

m]Φ(J1))

[2e]H(S2) = (Φ([2eµη1yu]Qu, 0), Φ([−2eµη1xu]Qu, 0))

= ([−guyu][2m]Φ(J1), [guxu][2
m]Φ(J1))

[2e]H(S3) = (Φ(0, [2eνη2xv]Pv), Φ(0, [2
eνη2yv]Pv))

= ([νxvgugvN1suv]Φ(0, [2
eγuγvη1η2σuv]Pv),

[νyvgugvN1suv]Φ(0, [2
eγuγvη1η2σuv]Pv))

= ([λxv][2
m]Φ(J2), [λyv][2

m]Φ(J2))

[2e]H(S4) = (Φ(0, [−2eνη2yv]Pv), Φ(0, [2
eνη2xv]Pv)

= ([−λyv][2m]Φ(J2), [λxv][2
m]Φ(J2)).

We also have:

[2e−m]H(T1) = (Φ([2e−mN1xu]Pu, [2
e−mxv]Pv), Φ([2

e−mN1yu]Pu, [2
e−myv]Pv)),

with:

Φ([2e−mN1xu]Pu, [2
e−mxv]Pv) = [µxu]Φ([2

e−mN1u]Pu, [2
e−mgusuv]Pv)

+ Φ(0, [2e−m(xv − µxugusuv)]Pv)

= [µxu]Φ(K1) + Φ(0, [2e−mµguyu(xvyu − xuyv)]Pv)

= [µxu]Φ(K1)

+ [µg2ugvyuδuvsuvN1N2]Φ(0, [2
e−mγuγvη1η2σuv]Pv)

= [µ1yu][2
m]Φ(J2) + [µxu]Φ(K1)

and:

Φ([2e−mN1yu]Pu, [2
e−myv]Pv) = [µyu]Φ(K1)

+ Φ(0, [2e−m(yv − µyugusuv)]Pv)

= [µyu]Φ(K1) + Φ(0, [−2e−mµguxu(xvyu − xuyv)]Pv)

= [µyu]Φ(K1)

− [µg2ugvxuδuvsuvN1N2]Φ(0, [2
e−mγuγvη1η2σuv]Pv)

= −[µ1xu][2
m]Φ(J2) + [µyu]Φ(K1),

so that:

[2e−m]H(T1) = ([µ1yu][2
m]Φ(J2)+ [µxu]Φ(K1),−[µ1xu][2

m]Φ(J2)+ [µyu]Φ(K1))
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And we also have

[2e−m]H(T2) = (Φ([−2e−mN1yu]Pu, [−2e−myv]Pv), Φ([2
e−mN1xu]Pu, [2

e−mxv]Pv))

= ([µ1xu][2
m]Φ(J2)− [µyu]Φ(K1), [µ1yu][2

m]Φ(J2) + [µxu]Φ(K1))

Similarly, we compute

[2e−m]H(T3) = (T3,1, T3,2),

with:

T3,1 := Φ([2e−m(1− 2eµη1)xu]Qu, [2
e−mη1xv]Qv)

= Φ([2e−mxu]Qu, [2
e−mη1xv]Qv)

= [η1xvγuσuv]Φ([2
e−m(N1u+ gugvµN2δ

2
uv)]Qu, [2

e−mgusuv]Qv)

+ Φ([2e−m(xu − η1xvγuσuv(N1u+ gugvµN2δ
2
uv))]Qu, 0)

= [η1xvγuσuv]Φ(K2)

+ Φ([−2e−mδuvη1σuvµ(N1uyu + gvxvN2δuv)]Qu, 0)

= [η1xvγuσuv]Φ(K2)

+ [δuvguσuv(N1uyu + gvxvN2δuv)]Φ([−2e−mη1µγu]Qu, 0)

= [µ2][2
m]Φ(J1) + [η1xvγuσuv]Φ(K2)

and:

T3,2 := Φ([2e−m(1− 2eµη1)yu]Qu, [2
e−mη1yv]Qv)

= Φ([2e−myu]Qu, [2
e−mη1yv]Qv)

= [η1yvγuσuv]Φ([2
e−m(N1u+ gugvµN2δ

2
uv)]Qu, [2

e−mgusuv]Qv)

+ Φ([2e−m(yu − η1yvγuσuv(N1u+ gugvµN2δ
2
uv)]Qu, 0)

= [η1yvγuσuv]Φ(K2)

+ Φ([2e−mδuvη1σuvµ(N1uxu − yvgugvN2δuv)]Qu, 0)

= [η1yvγuσuv]Φ(K2)

− [δuvguσuv(N1uxu − gugvyvN2δuv)]Φ([−2e−mη1µγu]Qu, 0)

= −[µ3]Φ(J1) + [η1yvγuσuv]Φ(K2),

so that:

[2e−m]H(T3) = ([µ2][2
m]Φ(J1) + [η1xvγuσuv]Φ(K2),

− [µ3][2
m]Φ(J1) + [η1yvγuσuv]Φ(K2)).

Finally, we have

[2e−m]H(T4) = (Φ([−(1− 2eµη1)yu]Qu, [−η1yv]Qv),
Φ([(1− 2eµη1)xu]Qu, [η1xv]Qv)) = (−T3,2, T3,1)

= ([µ3][2
m]Φ(J1)− [η1yvγuσuv]Φ(K2),

[µ2][2
m]Φ(J1) + [η1xvγuσuv]Φ(K2)).

This completes the proof.
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B.4 The splitting and identification of the result curve Ea

Once we have computed F : E2
u × E2

v → E2
a × E′2 as a 2-isogeny chain, the

codomain we obtain does not have a product theta structure from which we can
obtain the theta null point of Ea, using Eq. (17). The theta structure we obtain
is induced by the ζ2

e

-symplectic basis of (E2
a × E′2)[4] given by:

D1 := ([2e]F (S1), · · · , [2e]F (S4), F (T1), · · · , F (T4)),

while a product theta structure of E2
a × E′2 is induced by the ζ2

e

-symplectic
basis D0 := (U1, · · · , U4, V1, · · · , V4), where:

U1 := ([2e]φbk
(P ), 0, 0, 0), U2 := (0, [2e]φbk

(P ), 0, 0),

U3 := (0, , 0, [2e]Ψ ◦ Φ̃(φbk
(P ), 0)), U4 := (0, 0, [2e]Ψ ◦ Φ̃(0, φbk

(P ))),

V1 := ([2eη1]φbk
(Q), 0, 0, 0), V2 := (0, [2eη1]φbk

(Q), 0, 0),

V3 := (0, 0, [2eµνη21η2]Ψ◦Φ̃(φbk
(Q), 0)), V4 := (0, 0, [2eµνη21η2]Ψ◦Φ̃(0, φbk

(Q))),

given by Lemma A.1, where η1, η2, µ, ν are modular inverse ofN1, N2, u, v modulo
4 respectively. By Lemma A.1, we also obtain the

Lemma B.6. The change of basis matrix from D1 to D0 is given by

M4 :=



0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 vN2 0 0 0 0 0
0 0 0 vN2 0 0 0 0
1 0 −vN2 0 0 0 0 0
0 1 0 −vN2 0 0 0 0
0 0 0 0 1 0 νη2 0
0 0 0 0 0 1 0 νη2


.

Hence, using the matrix M4 above, the non-product theta null point of
E2

a × E′2 and the change of coordinates formulas from [18, Theorem 12], we

can compute the product theta null point of E2
a × E′2 given by:

(θ
E2

a×E
′2

i1,i2,i3,i4
(0))i1,i2,i3,i4∈Z/2Z = (θEa

i1
(0)·θEa

i2
(0)·θE

′

i3 (0)·θE
′

i4 (0))i1,i2,i3,i4∈Z/2Z. (18)

We can extract the projective theta null point (a : b) := (θEa
0 (0) : θEa

1 (0)) by

finding i3, i4 ∈ Z/2Z such that the θ
E2

a×E
′2

0,0,i3,i4
(0) ̸= 0 and set a := θ

E2
a×E

′2

0,0,i3,i4
(0) and

b := θ
E2

a×E
′2

1,0,i3,i4
(0). This theta null point (a : b) gives 6 different possibilities for

the Montgomery coefficient A of

Ea : By2 = x3 +Ax2 + x.

Those possibilities are presented in Proposition A.1. All of these possible coef-
ficients are not defined over Fp as Ea should. This removes 2 to 4 possibilities
out of 6.
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However, we still cannot distinguish Ea from its quadratic twist i.e. identify
B from the theta null point (a : b). To circumvent this difficulty, we impose
B = 1 (or any quadratic residue over Fp) and require that 4-torsion points of
the form (±1 : ∗ : 1) are defined in Ea(Fp) i.e. that A+2 and A−2 are quadratic
residues over Fp. This lifts all ambiguity since a Montgomery curve is determined
by a point of 4-torsion.

In practice, to identify the right Montgomery coefficient A of Ea, we pick a
4-torsion point Tu ∈ Eu(Fp), which does exist since Eu is defined over Fp, as the
result of an ideal action on E (see the proof of Lemma 5.1). Since

F (Tu, 0, 0, 0) = ([xu]φbk
◦ φ̂u(Tu), ∗),

and both φbk
and φu are associated to ideal actions, the point Ta := [xu]φbk

◦
φ̂u(Tu) is Fp-rational. Because N1 = N(a) and gu = deg(φu) are odd and xu can
be assumed to be odd (swapping xu and yu if necessary), Ta is also a point of
4-torsion. We can then compute several change of theta coordinates until Ta is
mapped to one of the Fp-rational theta points (1 : 0) or (0 : 1) that are mapped
to the desired Fp-rational Montgomery points (−1 : 1) and (1 : 1) respectively.
Once this is done, we identify a Montgomery coefficient A from the new theta
null point, following Proposition A.1.

To lift (±1 : 1) in Ea(Fp) given by y2 = x3 + Ax2 + x, we need A ± 2
to be a quadratic residue over Fp. If this is not the case, then Ea is given by
−y2 = x3+Ax2+x (in which (±1 : 1) is Fp-rational). But there is an Fp-rational
isomorphism (x, y) 7→ (−x, y) from −y2 = x3 +Ax2 +x to y2 = x3 −Ax2 +x so
we can change A into −A in this case.

In practice, on the Montgomery curve Eu, we take Tu the point with x-
coordinate x(Tu) = 1. By the same reasoning as above, replacing Au by −Au
if necessary, we can assume that Tu is rational. The level 2 theta null point we
obtain in the end for Ea implicitly contains the x-coordinate of the image of Tu,
so we do not even need to push the 4-torsion point Tu explicitly.

C Relaxing the B-good condition

This section outlines an approach to relax the B-good condition of Section 4.1
to improve the probability of finding (u, v) such that isogenies of degree u and
v can be efficiently computed in dimension 2.

Instead of looking for a pair (u, v) of B-good integers, we search for (u, v)
such that u takes the form u = gu(ax

2
u+ by2u) and v the form v = gv(ax

2
v + by2v),

where xu, yu, xv, yv ∈ N and gu, gv, a, b ∈ N∗ are products of primes lying in B.
Note that the B-good case is the case a = b = 1.

Before discussing the advantages and drawbacks of introducing additional
freedom through a and b, let us describe how the Kani diagram in dimension 4 for
computing Ea (cf. Section 3.1 ) is reshaped by this change. In this construction,
we assume that B is a set of Elkies primes. As we shall see, this assumption is
crucial to ensure the well-definedness of our Kani diagram.
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We have uN(bk) + vN(ck) = 2e where b = bebk and c = ceck are ideals
equivalent to a with [bk] ·E1 = Ea and [ck] ·E2 = Ea. Additionally, u = gu(ax

2
u+

by2u) and v = gv(ax
2
v + by2v) as defined above.

Using Elkies’ algorithm (cf. Section 3.2), we construct the following
(ax2u, by

2
u)-isogeny diamond and (ax2v, by

2
v)-isogeny diamond

E1,b

xuφ
′
1,a// E1,ab

E1

yuφ1,b

OO

xuφ1,a // E1,a

yuφ
′
1,b

OO
E2,b

xvφ
′
2,a// E2,ab

E2

yvφ2,b

OO

xvφ2,a // E2,a

yvφ
′
2,b

OO

where φ1,a, φ
′
1,a, φ2,a, φ

′
2,a are isogenies of degree a and φ1,b, φ

′
1,b, φ2,b, φ

′
2,b are

isogenies of degree b. From this, we obtain an (ax2u + by2u)-isogeny Φ1 : E1 ×
E1,ab → E1,a × E1,b and an (ax2v + by2v)-isogeny Φ2 : E2 × E2,ab → E2,a × E2,b

explicitly given by the matrices(
xuφ1,a yuφ̂

′
1,b

−yuφ1,b xuφ̂
′
1,a

)
and

(
xvφ2,a yvφ̂

′
2,b

−yvφ2,b xvφ̂
′
2,a

)
.

Then, we compute a gu-isogeny Φgu : E1,a × E1,b → Au and a gv-isogeny Φgv :
E2,a × E2,b → Av, where Au and Av are each products of elliptic curves. This
can be achieved using Elkies’ algorithm to compute four isogenies ψa,u, ψb,u, ψa,v
and ψb,v such that ψc,u : E1,c → Ec,u is an gu-isogeny and ψc,v : E1,c → Ec,v is
an gv-isogeny, where c ∈ {a, b}. Hence, we obtain Φgu and Φgv from the diagonal
matrices (

ψa,u 0
0 ψb,u

)
and

(
ψa,v 0
0 ψb,v

)
.

Let us denote by Φu the gu(ax
2
u + by2u)-isogeny Φgu ◦ Φ1 : E1 × E1,ab → Au

and by Φv the gv(ax
2
v + by2v)-isogeny Φgv ◦ Φ2 : E2 × E2,ab → Av.

To state the Kani diagram in dimension 4, it remains only to consider the
actions of bk and ck. Note that the key difference here is that bk (resp. ck) acts
on E1 × E1,ab (resp. E2 × E2,ab) rather than on E2

1 (resp. E2
2). We denote by

Φbk
: E1 ×E1,ab → Ea ×E3 and Φck : E2 ×E2,ab → Ea ×E4 the corresponding

N(bk)-isogeny and N(ck)-isogeny. To ensure that this leads to a construction
similar to the B-good case, we now prove that E3 = E4.

Thanks to the assumption on the primes in B being Elkies, we can express
E3 and E4 in terms of ideal actions. We have

E3 = [bk] · E1,ab = [bkIaIb] · E1 = [bkIaIbbe] · E

and
E4 = [ck] · E2,ab = [ckIaIb] · E2 = [ckIaIbce] · E.

By commutativity and by construction of bk and ck, we have

[bkIaIbbe] = [IaIbb] and [ckIaIbce] = [IaIbc].
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Moreover, since both b and c are equivalent to a, we have that E3 = [IaIb] ·Ea =
E4. We denote by E′ the curve [IaIb] · Ea.

Finally, using Lemma 2.2, there exist a gu(ax
2
u+by

2
u)N(ck)-isogeny Ψ : Au →

A and a gv(ax
2
v + by2v)N(bk)-isogeny Φ : A → Av such that Φ ◦ Ψ = Φv ◦ Φ̃ck ◦

Φbk
◦ Φ̃u. Therefore, we have the following Kani-square

A
Φ // Av

E2 × E2,ab

Φv

OO

Au

Ψ

OO

Φ̃u// E1 × E1,ab

Φbk // Ea × E′

Φ̃ck

OO

By Lemma 2.3 and as gu(ax
2
u+ by

2
u)N1+gv(ax

2
v+ by

2
v)N2 = 2e, this isogeny-

diamond leads to an 2e-isogeny F : Au ×Av → Ea × E′ ×A with kernel

ker(F ) = {([gu(ax2u + by2u)N1](x), Φv ◦ Φ̃ck ◦ Φbk
◦ Φ̃u(x)|x ∈ Au[2

e]}.

This kernel can also be expressed from points of E1 × E1,ab as

ker(F ) = {([N1]Φu(P,Q), Φv ◦ Φ̃ck ◦ Φbk
(P,Q))|(P,Q) ∈ E1 × E1,ab[2

e]}.

From there, one can compute this 2e-isogeny F using the same method as in
Section 3.1.

Assessment of the relaxation. We now investigate the benefits and draw-
backs of considering pairs (u, v) of such a form. First, the main additional
cost is the computation of the a-isogenies φ1,a, φ

′
1,a, φ2,a, φ

′
2,a and b-isogenies

φ1,b, φ
′
1,b, φ2,b, φ

′
2,b. Since half of them are simply pushforwards of the other

half, they can essentially be computed with two calls to the Elkies’ algorithm
for the a-isogenies and two calls for the b-isogenies. On the other hand, one may
expect that the probability of an integer being representable as ax2 + by2, with
a, b ∈ {1, 2, 3, 5, 7}, is at least three times greater than the probability of be-
ing representable by a sum of two squares. The table of experimental results in
Figure 1 supports this assumption.

Let us briefly explain why the set {2, 3, 5, 7} is an interesting choice for B
regarding a, b.

We first focus on forms x2+by2 where b is prime. Our discussion relies mainly
on Proposition C.1 and on the fact that an integer whose prime factors are all
represented by such a quadratic form can itself be represented by this form.

Proposition C.1. [17, Corollary 2.6] Let b be an integer and p be an odd prime
such that gcd(b, p) = 1. Then p is represented by a primitive form of discriminant
−4b if and only if its Legendre symbol (−b/p) is equal to 1.
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Bit size 32 bits 64 bits 128 bits
Success rate when a, b ∈ {1} 0.11 0.08 0.05
Success rate when a, b ∈ {1, 2, 3, 7} 0.31 0.24 0.18
Success rate when a, b ∈ {1, 2, 3, 5, 7} 0.33 0.28 0.20

Fig. 1. Success rates for representing an integer as ax2+ by2, with x, y ∈ N, depending
on the possible values for a and b. Each rate is computed from 10,000 integers drawn
uniformly at random. Forms where a ̸= 1 and b = 7 were not considered.

Note that the quadratic form x2+ by2 has discriminant −4b. Hence, the best
choices for b to maximize the probability that primes are represented by x2+by2

are those for which the class group of discriminant −4b has cardinality 1. Indeed,
by Proposition C.1, if (b/p) = 1, then p is represented by a primitive form of
discriminant 4b. When there is a unique class in this group, we have that x2+by2

is equivalent to this primitive form. Therefore, x2 + by2 also represents p.

Since an integer has a probability of one-half of being a quadratic residue
modulo a prime p, we expect that x2 + by2 represents p with probability
one-half. In addition, since the set of even discriminants of class number 1 is
−4,−8,−12,−16,−28, there are only 4 such forms interesting to us: x2 + y2,
x2 + 2y2, x2 + 3y2 and x2 + 7y2. We cover all of them with the set of primes
{2, 3, 7}.

The second-best choices for b are those for which the corresponding class
group has cardinality 2, such as b = 5 and b = 13. The probability that a prime
is representable by x2 + by2 is then halved for such b. However, from [17], we
have the following equivalences

p = x2 + y2 iff p = 1 mod 4,

p = x2 + 5y2 iff p = 1, 9 mod 20,

p = x2 + 13y2 iff p = 1, 9, 17, 25, 29, 49 mod 52.

Hence, if p is represented by x2 + 5y2 or x2 + 13y2, it is also represented by
x2 + y2. Nevertheless, adding 5 to the list of prime factors gives access to the
forms 2x2 + 5x2, x2 + 10x2 and so on. This explains why, in Fig. 1, adding 5
improves the probability of success.

Other experiments have shown that adding a quadratic form from a class
group with cardinality 3 or more, such as x2+11y2, has only a negligible impact.
This is why, we did not consider forms ax2 + by2 where a ̸= 1 and b = 7, nor
forms where a or b are composite numbers. All these cases lead to class groups
of cardinality greater than 3. Additionally, the next prime after 13 that yields
a class group of cardinality 2 is 37. Therefore, to achieve the most significant
improvement with the smallest set of primes, it seems reasonable to consider
only primes up to 7.
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D Algorithms for working over Fp

In this appendix, we give the necessary algorithms for working over Fp .

D.1 Fast sampling of a basis given by the eigenspaces

Let p ≡ 7 (mod 8), and let E/Fp be a supersingular elliptic curve on the surface,

i.e. oriented by Z[ 1+
√
−p

2 ]. Recall that for 2f || (p+ 1), we have

E(Fp)[2f ] = Z/2Z× Z/2f−1Z,

and that on E[2f−1], the Frobenius has eigenvalues ±1. Our goal is to efficiently
sample a basis ⟨P,Q⟩ = E[2f−1], such that x(P ), x(Q) ∈ Fp . To do this, we first
study the three non-trivial 2-torsion points on E. Denote them as follows:

– T0 is the point corresponding to the descending 2-isogeny, i.e. E/⟨T0⟩ is
primitively oriented by Z[

√
−p]

– T−1 is the point corresponding to the horizontal 2-isogeny, such that there
does not exist a point T ′ ∈ E(Fp) satisfying [2]T ′ = T−1.

– T1 is the point corresponding to the horizontal 2-isogeny, such that there
does exist a point T ′ ∈ E(Fp) satisfying [2]T ′ = T1.

Although these points could easily be distinguished by looking at their di-
vision points, we show that they can more efficiently be distinguished by their
Tate-pairings.

Lemma D.1. With the notation above, the (reduced) Tate-pairings are given as
follows:

– eT,2(T−1, T−1) = eT,2(T−1, T0) = eT,2(T−1, T1) = 1,
– eT,2(T0, T−1) = eT,2(T0, T0) = −1 and eT,2(T0, T1) = 1,
– eT,2(T1, T−1) = eT,2(T1, T0) = −1, and eT,2(T1, T1) = 1.

Proof. Recall (see e.g. [57, 61, Lemma 5]) that for Ti and ϕi : E → E/⟨Ti⟩, we
have that eT,2(Ti, R) is 1 if there exists a rational point R′ such that ϕ̂i(R

′) = R,
and −1 otherwise. The lemma can then be proved as follows:

Note first that we certainly have eT,2(Ti, T1) = 1, since there exists a point

T ′ such that [2]T ′ = ϕ̂i ◦ ϕi(T ′) = T1.
For T0, the corresponding isogeny ϕ0 is descending, and hence the 2f -torsion

on E/⟨T0⟩ is cyclic. Thus, T0 is not in the rational image of ϕ̂0, and since we
know that eT,2(T0, T1) = 1, we get that eT,2(T0, T0) = eT,2(T0, T−1) = −1.

For T−1, we have that ker(ϕ̂−1) = ⟨ϕ1(T1)⟩. Since f ≥ 3, there are rational

points R′ ∈ E/⟨T−1⟩ (of order 4) satisfying ϕ̂−1(R
′) = T1, and since E/⟨T−1⟩[2]

is Fp-rational, the other 2-torsion points are mapped to T−1 and T0. Hence
eT,2(T−1, Ti) = 1.

Finally, for T1, we have that ker(ϕ̂1) = ⟨ϕ1(T0)⟩ = ⟨ϕ1(T−1)⟩. Since T0 and
T−1 are both in E(Fp)\[2]E(Fp), its clear that eT,2(T1, T0) = eT,2(T1, T−1) = −1.
(This also follows by the non degeneracy of the Tate pairing and the fact that
eT,2(T1, T1) = 1.)
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Thus, given a curve and the three non-trivial 2-torsion points, we can by
Lemma D.1 easily detect which point corresponds to which index. Together
with the following lemma, this gives a particularily fast algorithm for sampling
a basis of the form that we want.

Lemma D.2. Let p ≡ 7 (mod 8), let

E/Fp : y2 = g(x)

be an elliptic curve with EndFp (E) = Z[ 1+π2 ], and let f = v2(p+1), so that there
exists a point on E(Fp) of exact order 2f−1. Denote by T0, T−1, T1 the three
non-trivial 2-torsion points, with the indexes as above. Let xP ∈ Fp . Then

– xP lifts to a point (xP , yP ) = P ∈ E(Fp) with 2f−1 | ord(P ) if and only if
(xP − x(T−1)) ∈ F∗

p \ F∗2
p and g(xP ) ∈ F∗2

p ,

– xP lifts to a point (xP , yP ) = P ∈ Et(Fp) with 2f−1 | ord(P ) if and only if
(xP − x(T1)) ∈ F∗2

p and g(xP ) ∈ F∗
p \ F∗2

p ,

where
Et/Fp : by2 = g(x)

denotes a quadratic twist of E over Fp . (We remark that we can take b = −1
because −1 is not a square over Fp .)

Proof. For the first part, note that it is obvious that P ∈ E(Fp) \ E[2] if and
only if g(xP ) ∈ F∗2

p . Further, let R ∈ E(Fp) be any element of exact order 2f−1.

We can write P = [u]R + [b]T0 + S with S in [2]E(Fp). Now 2f−1 divides the
order of P if and only if u is odd. The statement then follows from

eT,2(T−1, P ) = eT,2(T−1, R)
ueT,2(T−1, T0)

b = (−1)u,

where eT,2(T−1, R) = −1 by combining Lemma D.1 and the non-degeneracy of
the Tate pairing.

Next, write τ : E → Et for any twisting isomorphism leaving x fixed, and
write T t−1, T

t
0 , T

t
1 for the non-trivial 2-torsion points on Et, with indexes same

as before. The second part of the lemma then follows from the first after noting
that τ(T1) = T t−1, and that for any T t−1 ̸= Q ∈ Et(Fp), the reduced Tate pairing

e2(T
t
−1, Q) is given by the residue class of

x(Q)−x(T t
−1)

((x−x(T t
−1))/(y/x)

2)(0E)
= (x(Q) −

x(T t−1))/b.

Note that this gives a particularly effective algorithm for sampling a basis of
the form we want.

Remark D.1 (Choosing a canonical representative for the Montgomery coeffi-
cient). Let E/Fq be an elliptic curve. Recall (see e.g. [57, Example 5.12]) that
if T ∈ E[2](Fq), E can be put in a Montgomery form by2 = x3+Ax2+x with T
sent to (0, 0) if and only if there exists a rational cyclic group G ⊂ E[4] of order



60

4 that contains T . Equivalently, T has trivial self Tate pairing. If that is the
case, there are always exactly two different such subgroups, which give the two
coefficients A,−A. As explained in Appendix B.4, since −1 is not a square over
Fp , then if b = −1, switching to −A allows us to always work with Montgomery
models with b = 1.

There are always 6 possible Montgomery models over Fp (two for each of the
three 2-torsion points). However, in our situation of E/Fp on the surface, only T1
and T−1 give a rational Montgomery model. Indeed, T0 induces the descending
isogeny to the floor, which cannot be extended further to a rational 4-isogeny.
Imposing the condition that b = 1, we only have two possible Montgomery
coefficients for our elliptic curves.

In our implementation, we pick a deterministic one based on the lexicographic
order. An alternative choice would be to (for instance) pick the choice that sends
T−1 to (0, 0). A further optimisation would be to represent the Montgomery curve
not by the A coefficient, but by the x-coordinate α of T0 (for instance), from
which we recover A as −α−1/α. With this convention, we would be able to pick
up immediately the three points T1, T0, T−1 without a square root computation.
For the class group action, since we first compute the theta coordinate of Ea,
which encodes all the 2-torsion on Ea, we can easily output αa rather than Aa.
Explicitly, if (a : b) is a rational theta null point on Ea, then αa = (b2−a2)/(a2+
b2) is the x-coordinate of T0 when Ea is put into the Montgomery form such
that the 2-torsion theta point (−a : b) (which has trivial self pairing, hence is
either T1 or T−1) is sent to (0 : 1).

D.2 Evaluating endomorphisms with denominator

In this section, we show how to evaluate endomorphisms with denominator, by
using Tate-pairings instead of division points. We first give the general algorithm,
before noting that our situation is particularily simple.

Algorithm 4 EvalEndomorphismWithDenominator(α, P )

Input: α ∈ Z[ 1+π
n

], where π denotes the q-power Frobenius endomorphism, a point
P ∈ E(Fq), where EndFq (E) = Z[ 1+π

n
]

Output: α(P )
1: Write α = a+bπ

n
, with n of minimal denominator.

2: Compute a basis ⟨T1, T2⟩ = E[n].
3: Compute the pairings µ0 = eW,n(T1, T2), µ1 = eT,n(T1, P ), µ2 = eT,n(T2,−P ).
4: Compute r, s so that µr

0 = µ2 and µs
0 = µ1.

5: Set T = [r]T1 + [s]T2.
6: return [b]T + [a+b

n
]P .

Proposition D.1. Algorithm 4 is correct, and returns α(P ) without using di-
vision points.
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Proof. Since α− a+b
n = bπ−1

n , and a+b
n ∈ Z, we see that evaluating α(P ) reduces

to some simple scalar multiplications and additions after evaluating π−1
n (P ).

Notice that E[n] ⊆ E(Fq), since π − 1 factors through multiplication by
n. Thus, we can sample a basis ⟨T1, T2⟩ = E[n] over Fq. Let π−1

n (P ) = T .
We have that [n]T = (π − 1)(T ) = 0E , since T ∈ E(Fq) = ker(π − 1),
thus T can be written as T = [r]T1 + [s]T2 for some r, s. By the non-
degeneracy of the Weil-pairing, we can recover r, s by computing the evaluations
eW,n(T1, T2), eW,n(T1, T ), eW,n(T2, T ). Finally, by [57, Equation 15], we have that

eW,n(Ti, T ) = eT,n(Ti, P ),

which finishes the proof.

In the CSIDH/CSURF supersingular case, the maximal denominator n that
can occur is n = 2, which is the situation we are in in Section 5.2. Further, we
only ever need to evaluate the endomorphisms in multiples of our chosen basis
points P,Q, where P,Q are points of order 2f−1 for 2f || p+ 1

Notice that in this case, the algorithm becomes particularly easy; assuming
we aim to compute α(R) for α = a+πb

n , we are in one of two situations:

– If R = [m]P or R = [m]Q for some m ≡ 0 (mod 2), we see that the pairings
µ1 = µ2 = 1, and hence α(R) = [a+b2 ]R.

– If R = [m]P or R = [m]Q for some m ≡ 1 (mod 2), π−1
2 (R) is instead given

by the unique 2-torsion point Ti with eT,2(Ti, R) = 1. But we already know
that eT,2(T−1, P ) = eT,2(T1, Q) = −1 by Lemma D.2, hence we see that a
single Legendre test is enough to determine the correct Ti.

Example D.1. We of course have π−1
2 (T1) = 0, and by Lemma D.2, π−1

2 (T0) =
π−1
2 (T−1) = T−1 on E, and π−1

2 (T0) = π−1
2 (T1) = T1 on Et. If we sample P

above T1, then if eT,2(T0, P ) = 1, π−1
2 (P ) = T0, whereas if eT,2(T0, P ) = −1,

π−1
2 (P ) = T1.

Further, since translating by T ∈ E[2] is still well defined on the Kummer
line E/± 1, we see that evaluating our endomorphisms essentially only consists
of a single scalar multiplication, and potentially a translation by Ti, which can
all be done on the Kummer line.

Remark D.2. We can further refine our basis sampling to always output points
such that eT,2(T0, P ) = eT,2(T0, Q) = 1. By the discussion above, in this case we
will always know that the potential translation by Ti is by Ti = T0. Sampling
such a basis is easy to do using Lemma D.2: we want that xP − x(T0) is a
square, i.e. xP = x(T0) + u2, and since Q is on the twist, that xQ− x(T0) is not
a square, i.e. xQ = x(T0)− u2. Then by the non degeneracy of the Tate pairing,
we have eT,2(T−1, P ) = −1 and eT,2(T1, Q) = −1, so by bilinearity we also have
eT,2(T1, P ) = −1 and eT,2(T−1, Q) = −1.
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D.3 Using the bottom of the volcano

We describe an alternative strategy to sample a basis on E by using the de-
scending isogeny ϕT0

: E → E0. Recall that T0 is the unique 2-torsion point on
E with non trivial self Tate pairing.

On E0, we are at the bottom of the 2-isogeny volcano, so the 2-Sylow is cyclic,
generated by a rational point P0 of order 2f . The image of P0 by ϕ̂T0 is then
a point P of order 2f−1 on E. By construction of P , we have eT,2(T0, P ) = 1,
while eT,2(T−1, P ) = eT,2(T1, P ) = −1 because P is of full order on E.

Doing the same construction on Et0, we get a point Q = ϕ̂T0
(Q0) ∈ Et,

and (P,Q) is an appropriate basis (as in Remark D.2) to which to apply the
evaluation algorithm of Appendix D.2.

We saw on Remark D.1 that there are 4 possible choices of Montgomery
coefficient for E (or 2 if we restrict to b = 1). Also, because the 2-torsion is
rational on E, then A+ 2 being a square is equivalent to A− 2 being a square,
in which case (1 : 1) and (−1 : 1) lift to a rational point of 4-torsion on E :
y2 = x3 +Ax2 + x. In the other case, then −A+2 and −A− 2 are squares, and
(1 : 1), (−1 : 1) lift to Et : y2 = x3 −Ax2 + x.

By contrast, on E0, there is only one rational point of 2-torsion T ′
0 (which

generates the kernel of ϕ̂T0), which has trivial self Tate pairing, so we can find
a Montgomery form for E0 with T ′

0 sent to (0, 0). Then E0 is isomorphic to
by2 = x3 + A0x

2 + x, and replacing A0 with −A0 if necessary, we can assume
b = 1. In particular, there is only one choice for A0 to put E0 in Montgomery
form E0 : y2 = x3 + A0x

2 + x. Furthermore, either A0 + 2 is a square (so (1, 1)
lifts to E0) and then A0− 2 is not a square (so (−1, 1) does not lift), so −A0+2
is a square and −A0 − 2 is not a square. Conversely, A0 + 2 not being a square
is equivalent to A0 − 2 being a square, −A0 +2 not a square, −A0 − 2 a square.

We see that A0 gives a convenient way to represent not only E0, but also E:
we have T ′

0 = (0, 0), ϕT ′
0
the canonical ascending isogeny E0 → E, whose dual

ϕT0
has kernel generated by T0, and also that if A0+2 is a square then the image

of (1 : 1) by ϕT ′
0
gives T1, and the image of (−1 : 1) gives T−1 (and conversely if

A0 + 2 is not a square).
A last advantage is that we can efficiently sample P0 ∈ E0(Fp), Q0 ∈ Et(Fp)

of full order 2f by adapting the entangled basis algorithm of [66]. We first sample
x(P0) a non square in Fp of the form −A0/(1−u2) until we find that x(P0) lifts
to a rational point P0 on E0. Since the Tate pairing of T ′

0 with P0 is non trivial
by construction, P0, multiplied by the cofactor, has exact order 2f . Now set
x(Q0) = −A0 − x(P0) = −u2x(P0). Then x(Q0) is a square, and x(Q0)

2 +
A0x(Q0) + x(Q0) = x(P0)

2 + A0x(P0) + x(P0) = y(P0)
2/x(P0) is not a square.

So x(Q0) lifts to a point on the twist −y2 = x3+A0x
2+x, with y(Q0) = uy(P0).

And the non reduced Tate pairing of T ′
0 and Q0 is given by the class of −x(Q0),

which is not trivial. Hence Q0, multiplied by the cofactor, also has exact order
2f on Et. We can precompute a table of elements such that −1/(1− u2) is not
a square and another table of elements such that −1/(1− u2) is a square. Then
for the entangled basis generation, depending on whether A0 is a square or not,
we use the first or the second table.
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Remark D.3 (The horizontal isogenies of degree 2f−1). On E, which is at the

crater, the ideal (2) splits as (2) = p1p−1. We have 2f || π2 − 1, and pf−1
1 p−1 |

π − 1, pf−1
−1 p1 | π + 1.

Let (P0, Q0) be our basis sampled on E0 as above, P = ϕ̂T0
(P0), Q = ϕ̂T0

(Q0)
the points of order 2f−1 on E. Then since T ′

0 has non trivial pairing with P0,
then by [57, Example 5.16], the isogeny generated by P0 lands on the bottom

of the volcano, hence ⟨P ⟩ is not the kernel of the isogeny associated to pf−1
1 , as

can also be seen from the fact that it has non trivial pairing with T1. However,
if P ′ = P + T−1 or P ′ = P + T0, then eT,2(T1, P

′) = 1 by Lemma D.1, and so

⟨P ′⟩ is the kernel of pf−1
1 . A similar argument shows that E[pf−1

−1 ] = ⟨Q+ T0⟩.

Remark D.4 (The 2-isogenies between E and E0). As illustrated above, it is
convenient to use the 2-isogenies ϕT0

and ϕT ′
0
to move between E and E0. We

also would like to have E in Montgomery form, and E0 too for the entangled basis
generation. To put a curve E in Montgomery form, we need the x-coordinate
of a point of 4-torsion T ′ ∈ E such that x(T ′) ∈ Fp . In particular, if we start
with E0 in Montgomery form, and take the quotient by T ′

0, we easily find E in
Legendre form (see for instance [59, Example B.1]), but finding a Montgomery
form for E requires either a square root or to push the 8-torsion point 2f−3P0

(or 2f−3Q0) to E via ϕT ′
0
.

On the other hand, if we start from E in Montgomery form and we are given
α = x(T0), then we can directly find E0 in Montgomery form using the formulas
from [52, Proposition 2]. Hence it may be useful to use α to represent E (or even
use the level 2 theta null point), as already suggested in Remark D.1, to save a
square root.

E Parameter choices

In this section we give more details about the choice of the set of primes to
include in B. Clearly, adding more primes to B improves the time of Step 1 by
making the values of N1 and N2 in Equation (11) smaller. On the other hand, we
are on average required to compute more and isogenies of larger degree in Step
2. If we start from a very small set of primes, say B = {2, 3}, and keep adding
the smallest possible prime to this set, we hence expect the time of Step 1 to
decrease, up to a point where most expensive operations are eventually checking
the validity of a u, v pair instead of finding one. Since on average we need to
check a constant number of pairs u, v, at some point adding primes to B will
not improve Step 1, while still slowing down Step 2. This is exactly what we
observe in Figure 2, where we compare the times for different choices of B in
the 500 parameter set. In each different column, all the (Elkies) primes up to
the last prime reported are included in B. It is then clear that the best choice
is B = {2, 3, 7, 11, 13}. Adding 29 or bigger primes has essentially no impact on
Step 1, while negatively affecting Step 2. Similar experiments were performed
for all security levels, and the results in Table 1 were derived accordingly.
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Fig. 2. Time in seconds for Steps 1 and 2 for different choices of B in the 500 parameter
set.

Fig. 3. Success rates of Step 1 for different choices of B.

A more detailed analysis is shown in Figure 3. Looking again at the 500
parameter set, on the x axis we have the last prime included in B, but this
time including also non-Elkies primes. So for instance the column 7 corresponds
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to B = {2, 3, 5, 7}, while in Figure 2 it corresponds to B = {2, 3, 7}, 5 being
non-Elkies. Every dot represents a random ideal passed to Step 1; cyan dots
correspond to successful runs, while gray dots correspond to failures. For each
dot, the y axis indicates the time taken to run Step 1. The green and red dots
show the average time for the given set, where green means that the denoted
prime is Elkies, and red that it is non-Elkies. Here we see that adding non-Elkies
primes to B does not help significantly, since they cannot appear as factors in
the ideals. Moreover, as already discussed, they would significantly slow down
Step 2 forcing us to work over extension fields.
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