

PEGASIS Practical Efficient Class Group Action using 4-dimensional isogenies

Joint with Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herledan Le Merdy, Riccardo Invernizzi, Damien Robert, Frederik Vercauteren and Benjamin Wesolowski

https://eprint.iacr.org/2025/401

Ryan Rueger
IBM Research Zurich & Technical University of Munich

Practically Efficient Class Group Action using 4-dimensional isogenies

Results

	Impl.	500	1000	1500	2000	4000
SCALLOP*	C++	35s	750s			
SCALLOP-HD*	Sage	88s	1140s			
PEARL-SCALLOP*	C++	30s	58s	710s		
KLaPoTi	Sage	207s				
REAFOIT	Rust	1.95s				
PEGASIS	Sage	1.53s	4.21s	10.5s	21.3s	121s

Table: Time measured in wall-clock time. Stars indicate different measuring hardware.

Imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\alpha]$ Supersingular Elliptic curve E/F_{p^2}

Imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\alpha]$

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$ defined by $\alpha \mapsto \omega$ with ω primitive

Imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\alpha]$

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$ defined by $\alpha \mapsto \omega$ with ω primitive

Primitively oriented elliptic curve (E, ι)

Imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\alpha]$

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation $\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E)$ defined by $\alpha \mapsto \omega$ with ω primitive

Primitively oriented elliptic curve (E, ι)

Integral invertible ideal $\mathfrak a$ with $p \nmid N(\mathfrak a)$ yields isogeny $\varphi_{\mathfrak a} \colon E \to E_{\mathfrak a}$

```
Imaginary quadratic order \mathcal{O}=\mathbb{Z}[\alpha]

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation \iota:\mathcal{O}\hookrightarrow \operatorname{End}(E) defined by \alpha\mapsto\omega with \omega primitive

Primitively oriented elliptic curve (E,\iota)

Integral invertible ideal \alpha with p\nmid N(\alpha) yields isogeny \varphi_\alpha:E\to E_\alpha

...with \ker(\varphi_\alpha)=E[\alpha]=\bigcap_{\alpha\in\alpha}\ker(\alpha) and \deg(\varphi_\alpha)=N(\alpha)
```

```
Imaginary quadratic order \mathcal{O}=\mathbb{Z}[\alpha]

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation \iota:\mathcal{O}\hookrightarrow \operatorname{End}(E) defined by \alpha\mapsto\omega with \omega primitive

Primitively oriented elliptic curve (E,\iota)

Integral invertible ideal \alpha with p\nmid N(\alpha) yields isogeny \varphi_\alpha:E\to E_\alpha

...with \ker(\varphi_\alpha)=E[\alpha]=\bigcap_{\alpha\in\alpha}\ker(\alpha) and \deg(\varphi_\alpha)=N(\alpha)

...and if \alpha principal then \varphi_\alpha is an endomorphism
```

```
Imaginary quadratic order \mathcal{O}=\mathbb{Z}[\alpha]

Supersingular Elliptic curve E/F_{p^2}

Primitive orientation \iota:\mathcal{O}\hookrightarrow \operatorname{End}(E) defined by \alpha\mapsto\omega with \omega primitive

Primitively oriented elliptic curve (E,\iota)

Integral invertible ideal \mathfrak{a} with p\nmid N(\mathfrak{a}) yields isogeny \varphi_\mathfrak{a}:E\to E_\mathfrak{a}

...with \ker(\varphi_\mathfrak{a})=E[\mathfrak{a}]=\bigcap_{a\in\mathfrak{a}}\ker(a) and \deg(\varphi_\mathfrak{a})=N(\mathfrak{a})

...and if \mathfrak{a} principal then \varphi_\mathfrak{a} is an endomorphism

Moreover (\varphi_\mathfrak{a})_*(\iota):\mathcal{O}\to\operatorname{End}(E_\mathfrak{a}); \gamma\to\varphi_\mathfrak{a}\iota(\gamma)\widetilde{\varphi_\mathfrak{a}}/[N(\mathfrak{a})] is a primitive orientation
```

```
Imaginary quadratic order \mathcal{O} = \mathbb{Z}[\alpha]
Supersingular Elliptic curve E/F_{n^2}
Primitive orientation \iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E) defined by \alpha \mapsto \omega with \omega primitive
Primitively oriented elliptic curve (E, \iota)
Integral invertible ideal a with p \nmid N(a) yields isogeny \varphi_a : E \rightarrow E_a
...with \ker(\varphi_a) = E[\mathfrak{a}] = \bigcap_{a \in \mathfrak{a}} \ker(a) and \deg(\varphi_a) = \mathsf{N}(\mathfrak{a})
...and if \alpha principal then \varphi_{\alpha} is an endomorphism
Moreover (\varphi_{\mathfrak{a}})_*(\iota): \mathcal{O} \to \operatorname{End}(E_{\mathfrak{a}}); \gamma \to \varphi_{\mathfrak{a}}\iota(\gamma)\widetilde{\varphi_{\mathfrak{a}}}/[\mathsf{N}(\mathfrak{a})] is a primitive orientation
...so (E_a, (\varphi_a)_*(\iota)) is primitively oriented
```

```
Imaginary quadratic order \mathcal{O} = \mathbb{Z}[\alpha]
Supersingular Elliptic curve E/F_{n^2}
Primitive orientation \iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E) defined by \alpha \mapsto \omega with \omega primitive
Primitively oriented elliptic curve (E, \iota)
Integral invertible ideal a with p \nmid N(a) yields isogeny \varphi_a : E \rightarrow E_a
...with \ker(\varphi_a) = E[\mathfrak{a}] = \bigcap_{a \in \mathfrak{a}} \ker(a) and \deg(\varphi_a) = \mathsf{N}(\mathfrak{a})
...and if \alpha principal then \varphi_{\alpha} is an endomorphism
Moreover (\varphi_{\mathfrak{a}})_*(\iota): \mathcal{O} \to \operatorname{End}(E_{\mathfrak{a}}); \gamma \to \varphi_{\mathfrak{a}}\iota(\gamma)\widetilde{\varphi_{\mathfrak{a}}}/[\mathsf{N}(\mathfrak{a})] is a primitive orientation
...so (E_a, (\varphi_a)_*(\iota)) is primitively oriented
We say \varphi: E \stackrel{\sim}{\to} E' is an \mathcal{O}-isomorphism (E, \iota) \stackrel{\sim}{\to} (E', \iota') if \iota' = (\varphi)_*(\iota)
```

```
Imaginary quadratic order \mathcal{O} = \mathbb{Z}[\alpha]
Supersingular Elliptic curve E/F_{n^2}
Primitive orientation \iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E) defined by \alpha \mapsto \omega with \omega primitive
Primitively oriented elliptic curve (E, \iota)
Integral invertible ideal a with p \nmid N(a) yields isogeny \varphi_a : E \rightarrow E_a
...with \ker(\varphi_a) = E[\mathfrak{a}] = \bigcap_{a \in \mathfrak{a}} \ker(a) and \deg(\varphi_a) = \mathsf{N}(\mathfrak{a})
...and if \alpha principal then \varphi_{\alpha} is an endomorphism
Moreover (\varphi_{\mathfrak{a}})_*(\iota): \mathcal{O} \to \operatorname{End}(E_{\mathfrak{a}}); \gamma \to \varphi_{\mathfrak{a}}\iota(\gamma)\widetilde{\varphi_{\mathfrak{a}}}/[\mathsf{N}(\mathfrak{a})] is a primitive orientation
...so (E_a, (\varphi_a)_*(\iota)) is primitively oriented
We say \varphi: E \stackrel{\sim}{\to} E' is an \mathcal{O}-isomorphism (E, \iota) \stackrel{\sim}{\to} (E', \iota') if \iota' = (\varphi)_*(\iota)
...and define SS_p^{pr}(\mathcal{O}) to be \mathcal{O}-isomorphism classes of (E, \iota)
```

```
Imaginary quadratic order \mathcal{O} = \mathbb{Z}[\alpha]
Supersingular Elliptic curve E/F_{n^2}
Primitive orientation \iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E) defined by \alpha \mapsto \omega with \omega primitive
Primitively oriented elliptic curve (E, \iota)
Integral invertible ideal a with p \nmid N(a) yields isogeny \varphi_a : E \rightarrow E_a
...with \ker(\varphi_a) = E[\mathfrak{a}] = \bigcap_{a \in \mathfrak{a}} \ker(a) and \deg(\varphi_a) = \mathsf{N}(\mathfrak{a})
...and if \mathfrak{a} principal then \varphi_{\mathfrak{a}} is an endomorphism
Moreover (\varphi_{\mathfrak{a}})_*(\iota): \mathcal{O} \to \operatorname{End}(E_{\mathfrak{a}}); \gamma \to \varphi_{\mathfrak{a}}\iota(\gamma)\widetilde{\varphi_{\mathfrak{a}}}/[\mathsf{N}(\mathfrak{a})] is a primitive orientation
...so (E_a, (\varphi_a)_*(\iota)) is primitively oriented
We say \varphi: E \stackrel{\sim}{\to} E' is an \mathcal{O}-isomorphism (E, \iota) \stackrel{\sim}{\to} (E', \iota') if \iota' = (\varphi)_*(\iota)
...and define SS_p^{pr}(\mathcal{O}) to be \mathcal{O}-isomorphism classes of (E, \iota)
Finally we get an action of CI(\mathcal{O}) on SS_n^{pr}(\mathcal{O})
```

```
Imaginary quadratic order \mathcal{O} = \mathbb{Z}[\alpha]
Supersingular Elliptic curve E/F_{n^2}
Primitive orientation \iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E) defined by \alpha \mapsto \omega with \omega primitive
Primitively oriented elliptic curve (E, \iota)
Integral invertible ideal a with p \nmid N(a) yields isogeny \varphi_a : E \rightarrow E_a
...with \ker(\varphi_a) = E[\mathfrak{a}] = \bigcap_{a \in \mathfrak{a}} \ker(a) and \deg(\varphi_a) = \mathsf{N}(\mathfrak{a})
...and if \alpha principal then \varphi_{\alpha} is an endomorphism
Moreover (\varphi_{\mathfrak{a}})_*(\iota): \mathcal{O} \to \operatorname{End}(E_{\mathfrak{a}}); \gamma \to \varphi_{\mathfrak{a}}\iota(\gamma)\widetilde{\varphi_{\mathfrak{a}}}/[\mathsf{N}(\mathfrak{a})] is a primitive orientation
...so (E_a, (\varphi_a)_*(\iota)) is primitively oriented
We say \varphi: E \stackrel{\sim}{\to} E' is an \mathcal{O}-isomorphism (E, \iota) \stackrel{\sim}{\to} (E', \iota') if \iota' = (\varphi)_*(\iota)
...and define SS_p^{pr}(\mathcal{O}) to be \mathcal{O}-isomorphism classes of (E, \iota)
Finally we get an action of CI(\mathcal{O}) on SS_n^{pr}(\mathcal{O})
Theorem (Onuki) This action is transitive with at most two orbits
```


Norm equation $\deg_p(\Phi) = N(\mathfrak{a}) + N(\mathfrak{b}) \stackrel{!}{=} 2^f$

Norm equation $\deg_p(\Phi) = N(\mathfrak{a}) + N(\mathfrak{b}) \stackrel{!}{=} 2^f$ Requirements

1.
$$f < e = v_2(p+1)$$
 2. $gcd(N(a), N(b)) = 1$

Norm equation $\deg_p(\Phi) = uN(\mathfrak{a}) + vN(\mathfrak{b}) \stackrel{!}{=} 2^f$

Norm equation $\deg_p(\Phi) = uN(\mathfrak{a}) + vN(\mathfrak{b}) \stackrel{!}{=} 2^f$ Requirements

1.
$$f < e = v_2(p+1)$$
 2. $gcd(uN(\mathfrak{a}), vN(\mathfrak{b})) = 1$ **3.** $u = deg_p(\phi_u), v = deg_p(\phi_v)$

Norm equation $\deg_{\mathfrak{p}}(\Phi) = u \mathsf{N}(\mathfrak{a}) + v \mathsf{N}(\mathfrak{b}) \stackrel{!}{=} 2^f$

Norm equation $\deg_{\mathfrak{p}}(\Phi) = u \mathsf{N}(\mathfrak{a}) + v \mathsf{N}(\mathfrak{b}) \stackrel{!}{=} 2^f$ Requirements

1.
$$f < e = v_2(p+1)$$
 2. $gcd(uN(\mathfrak{a}), vN(\mathfrak{b})) = 1$ **3.** $u = deg_p(\varphi_u), v = deg_p(\varphi_v)$

Frobenius Coin Problem

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$
 has a solution if $N(\mathfrak{b})N(\mathfrak{c}) \le 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Frobenius Coin Problem

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$
 has a solution if $N(\mathfrak{b})N(\mathfrak{c}) \le 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Minkowski Bound

Every class in $Cl(\mathcal{O})$ has a representative of norm at most $\sqrt{Disc(\mathcal{O})}$

Frobenius Coin Problem

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$
 has a solution if $N(\mathfrak{b})N(\mathfrak{c}) \le 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Minkowski Bound

Every class in $Cl(\mathcal{O})$ has a representative of norm at most $\sqrt{Disc(\mathcal{O})}$

Tension

We only permit f < e, but $N(\mathfrak{b})N(\mathfrak{c}) \approx \text{Disc}(\mathcal{O}) = p = c2^e - 1 \nleq 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Frobenius Coin Problem

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$
 has a solution if $N(\mathfrak{b})N(\mathfrak{c}) \le 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Minkowski Bound

Every class in $Cl(\mathcal{O})$ has a representative of norm at most $\sqrt{Disc(\mathcal{O})}$

Tension

We only permit f < e, but $N(\mathfrak{b})N(\mathfrak{c}) \approx \text{Disc}(\mathcal{O}) = p = c2^e - 1 \nleq 2^f - N(\mathfrak{b}) - N(\mathfrak{c})$

Solvability of the norm equation: An idea

Recall

Ideals of \mathcal{O} prime to the conductor factorise uniquely as product of prime ideals

Solvability of the norm equation: An idea

Recall

Ideals of $\mathcal O$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$ with action of \mathfrak{b}_e , \mathfrak{c}_e "easy"

Solvability of the norm equation: An idea

Recall

Ideals of \mathcal{O} prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$ with action of \mathfrak{b}_e , \mathfrak{c}_e "easy"

In practice

Factor so that $N(\mathfrak{b}_e)$, $N(\mathfrak{c}_e)$ are products of small primes split in \mathcal{O}

Solvability of the norm equation: An idea

Recall

Ideals of \mathcal{O} prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$ with action of \mathfrak{b}_e , \mathfrak{c}_e "easy"

In practice

Factor so that $N(\mathfrak{b}_e)$, $N(\mathfrak{c}_e)$ are products of small primes split in \mathcal{O}

Example $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$

Here $[\mathfrak{b}_e] \cdot E$ computed by successive Elkies isogenies defined over F_p

Solvability of the norm equation: An idea

Recall

Ideals of $\mathcal O$ prime to the conductor factorise uniquely as product of prime ideals Idea

Factor the ideals $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$, $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$ with action of \mathfrak{b}_e , \mathfrak{c}_e "easy"

In practice

Factor so that $N(\mathfrak{b}_e)$, $N(\mathfrak{c}_e)$ are products of small primes split in \mathcal{O}

Example $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$

Here $[\mathfrak{b}_e] \cdot E$ computed by successive Elkies isogenies defined over F_p

Outlook

Compute easy part first, norm equation for \mathfrak{b}_k , \mathfrak{c}_k

$$uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^f$$

easier to solve because $N(b_k)N(c_k) \leq N(b)N(c)$

Solvability of the norm equation: The diagram

Solvability of the norm equation: The diagram

Norm equation $\deg_p(\Phi) = uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) \stackrel{!}{=} 2^f$

Solvability of the norm equation: The diagram

Norm equation $\deg_p(\Phi) = uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) \stackrel{!}{=} 2^f$

$$\ker(\Phi) = \left\{ (\mathsf{N}(\mathfrak{a}) \varphi_{\mathsf{u}}(\mathsf{y}), \varphi_{\mathsf{v}} \mathsf{diag}(\widetilde{\varphi_{\mathfrak{c}_k}} \varphi_{\mathfrak{b}_k})(\mathsf{y}) \mid \mathsf{y} \in E^d_{\mathfrak{b}_e}[2^f] \right\} \quad \text{and} \quad \widetilde{\varphi_{\mathfrak{c}_k}} \varphi_{\mathfrak{b}_k} = \frac{1}{\mathsf{N}(\mathfrak{b}_e) \mathsf{N}(\mathfrak{c}_e)} \widetilde{\varphi_{\mathfrak{b}_e}} \varphi_{\mathfrak{c}_e}$$

The isogenies ϕ_u, ϕ_v

The isogenies ϕ_u, ϕ_v

Dimension 1 → Dimension 2 Kani-isogeny Φ
Requires knowledge of the endomorphism ring (SQISign2D)

The isogenies ϕ_u, ϕ_v

Dimension 1 → Dimension 2 Kani-isogeny Φ
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 → Dimension 4 Kani-isogeny Φ

Sums of squares (or QFESTA-style splitting using 4-dimensional isogenies)

The isogenies ϕ_u, ϕ_v

Dimension 1 → Dimension 2 Kani-isogeny Φ
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 → Dimension 4 Kani-isogeny Φ
Sums of squares (or QFESTA-style splitting using 4-dimensional isogenies)

Dimension 4 w Dimension 8 Kani-isogeny Φ Zahrin's trick

In dimension 2 with sum of two squares

In dimension 2 with sum of two squares

With
$$u = x_u^2 + y_u^2$$
 $\varphi_u = \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix}$ $E^2 \to E^2$ has $\deg_p(\varphi_u) = u$

In dimension 2 with sum of two squares

With
$$u = x_u^2 + y_u^2$$
 $\varphi_u = \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix}$ $E^2 \to E^2$ has $\deg_p(\varphi_u) = u$

Theorem $u = p_1^{k_1} \cdots p_n^{k_n} = x_u^2 + y_u^2$ if and only if k_i even when $p_i \equiv 3 \pmod{4}$

In dimension 2 with sum of two squares

With
$$u = x_u^2 + y_u^2$$
 $\varphi_u = \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix}$ $E^2 \to E^2$ has $\deg_p(\varphi_u) = u$

Theorem $u = p_1^{k_1} \cdots p_n^{k_n} = x_u^2 + y_u^2$ if and only if k_i even when $p_i \equiv 3 \pmod{4}$

Idea

Factor out (with multiplicity 1) small primes $r_i \equiv 3 \pmod{4}$ that are split in \mathcal{O}

In dimension 2 with sum of two squares

With
$$u = x_u^2 + y_u^2$$
 $\varphi_u = \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix}$ $E^2 \to E^2$ has $\deg_p(\varphi_u) = u$

Theorem $u = p_1^{k_1} \cdots p_n^{k_n} = x_u^2 + y_u^2$ if and only if k_i even when $p_i \equiv 3 \pmod{4}$

Idea

Factor out (with multiplicity 1) small primes $r_i \equiv 3 \pmod{4}$ that are split in \mathcal{O} Perform this part as chain of Elkies r_i -isogenies φ_{u,r_i}

In dimension 2 with sum of two squares

With
$$u = x_u^2 + y_u^2$$
 $\varphi_u = \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix}$ $E^2 \to E^2$ has $\deg_p(\varphi_u) = u$

Theorem $u = p_1^{k_1} \cdots p_n^{k_n} = x_u^2 + y_u^2$ if and only if k_i even when $p_i \equiv 3 \pmod{4}$

Idea

Factor out (with multiplicity 1) small primes $r_i \equiv 3 \pmod{4}$ that are split in \mathcal{O} Perform this part as chain of Elkies r_i -isogenies φ_{u,r_i}

If $u = g_u(x_u^2 + y_u^2)$ with g_u product of "bad primes" $r_i \equiv 3 \pmod{4}$ then

$$\varphi_u = \begin{pmatrix} \varphi_{u,r_1} \cdots \varphi_{u,r_l} & 0 \\ 0 & \varphi_{u,r_1} \cdots \varphi_{u,r_l} \end{pmatrix} \begin{pmatrix} x_u & y_u \\ -y_u & x_u \end{pmatrix} \colon E^2 \to E_u^2$$

has
$$\deg_{p}(\Phi) = g_{u}(x_{u}^{2} + y_{u}^{2}) = u$$

Rerandomisation

If we cannot solve the norm equation for [a] we can rerandomise

Rerandomisation

If we cannot solve the norm equation for $[\mathfrak{a}]$ we can rerandomise Pick small ideal $[\mathfrak{l}]$ and compute $[\mathfrak{a}\mathfrak{l}] \cdot ([\mathfrak{l}]^{-1}E)$

Rerandomisation

If we cannot solve the norm equation for $[\mathfrak{a}]$ we can rerandomise Pick small ideal $[\mathfrak{l}]$ and compute $[\mathfrak{a}\mathfrak{l}] \cdot ([\mathfrak{l}]^{-1}E)$ Let's look at some data ...

What we implemented

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal ${\mathfrak a}\,$

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$ Iterate small equivalent representatives

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\boldsymbol{\mathfrak{a}}$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b}=\mathfrak{b}_e\mathfrak{b}_k$

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$ Iterate small equivalent representatives Factor out all small ideals up to a small bound $\mathfrak b = \mathfrak b_e \mathfrak b_k$ Sort by norm of the non-smooth part $\mathfrak b_k$

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\boldsymbol{\alpha}$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k,\mathfrak{c}_k$

What we implemented

Step 1: Finding UV

Step 2: Computing $ker(\Phi)$

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$ Iterate small equivalent representatives Factor out all small ideals up to a small bound $\mathfrak b = \mathfrak b_e \mathfrak b_k$ Sort by norm of the non-smooth part $\mathfrak b_k$ Try to solve the norm equation for the non-smooth part $\mathfrak b_k$, $\mathfrak c_k$

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal ${\mathfrak a}$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k, \mathfrak{c}_k$

Step 2: Computing ker(Φ)

Evaluate the isogeny ϕ_{b_e}

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k, \mathfrak{c}_k$

Step 2: Computing ker(Φ)

Evaluate the isogeny ϕ_{b_e}

Evaluate the isogeny $\widetilde{\phi_{\mathfrak{c}_k}}\phi_{\mathfrak{b}_k}=\widetilde{\phi_{\mathfrak{b}_e}}\phi_{\mathfrak{c}_e}/N(\mathfrak{b}_e)N(\mathfrak{c}_e)$

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k, \mathfrak{c}_k$

Step 2: Computing ker(Φ)

Evaluate the isogeny ϕ_{b_e}

Evaluate the isogeny $\widetilde{\phi_{\mathfrak{c}_k}}\phi_{\mathfrak{b}_k}=\widetilde{\phi_{\mathfrak{b}_e}}\phi_{\mathfrak{c}_e}/N(\mathfrak{b}_e)N(\mathfrak{c}_e)$

Step 3: Compute the 4d-isogeny

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k, \mathfrak{c}_k$

Step 2: Computing ker(Φ)

Evaluate the isogeny ϕ_{b_e}

Evaluate the isogeny $\widetilde{\phi_{\mathfrak{c}_k}}\phi_{\mathfrak{b}_k}=\widetilde{\phi_{\mathfrak{b}_e}}\phi_{\mathfrak{c}_e}/N(\mathfrak{b}_e)N(\mathfrak{c}_e)$

Step 3: Compute the 4d-isogeny

Pass the kernel to 4d-library

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal $\mathfrak a$

Iterate small equivalent representatives

Factor out all small ideals up to a small bound $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$

Sort by norm of the non-smooth part \mathfrak{b}_k

Try to solve the norm equation for the non-smooth part $\mathfrak{b}_k, \mathfrak{c}_k$

Step 2: Computing ker(Φ)

Evaluate the isogeny ϕ_{b_e}

Evaluate the isogeny $\widetilde{\phi_{\mathfrak{c}_k}}\phi_{\mathfrak{b}_k}=\widetilde{\phi_{\mathfrak{b}_e}}\phi_{\mathfrak{c}_e}/N(\mathfrak{b}_e)N(\mathfrak{c}_e)$

Step 3: Compute the 4d-isogeny

Pass the kernel to 4d-library

Solve the twisting problem

Timings of the steps

Parameter	Step 1	Step 2	Step 3	Tot. Time
500	0.097s	0.48s	0.96s	1.53s
1000	0.21s	1.16s	2.84s	4.21s
1500	1.19s	2.85s	6.49s	10.5s
2000	1.68s	8.34s	11.3s	21.3s
4000	15.6s	52.8s	53.5s	122s

Table: SageMath 10.5 timings on Intel Core i5-1235U at 4.0 GHz, in wall-clock time.

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider
$$\gamma_1=x_1+y_1\sqrt{\Delta}$$
 and $\gamma_2=x_2+y_2\sqrt{\Delta}$ in $\mathcal{O}=\mathbb{Z}+\sqrt{\Delta}\mathbb{Z}$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider
$$\gamma_1=x_1+y_1\sqrt{\Delta}$$
 and $\gamma_2=x_2+y_2\sqrt{\Delta}$ in $\mathcal{O}=\mathbb{Z}+\sqrt{\Delta}\mathbb{Z}$
Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider $\gamma_1=x_1+y_1\sqrt{\Delta}$ and $\gamma_2=x_2+y_2\sqrt{\Delta}$ in $\mathcal{O}=\mathbb{Z}+\sqrt{\Delta}\mathbb{Z}$ Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

Idea If $N \gg |\Delta|$ then $m = N - |\Delta|(y_1^2 + y_2^2) \ge 0$ often enough that we find $m = x_1^2 + x_2^2$ as sum of squares

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider $\gamma_1=x_1+y_1\sqrt{\Delta}$ and $\gamma_2=x_2+y_2\sqrt{\Delta}$ in $\mathcal{O}=\mathbb{Z}+\sqrt{\Delta}\mathbb{Z}$ Then

$$\gamma = \begin{pmatrix} \gamma_1 & \overline{\gamma_1} \\ -\gamma_2 & \overline{\gamma_2} \end{pmatrix} : E^2 \to E^2 \quad \text{has} \quad \deg_p(\gamma) = (x_1^2 + x_2^2) + \Delta(y_1^2 + y_2^2)$$

Idea If $N \gg |\Delta|$ then $m = N - |\Delta|(y_1^2 + y_2^2) \ge 0$ often enough that we find $m = x_1^2 + x_2^2$ as sum of squares

Heuristic If $N \gg |\Delta|$, we can find endomorphism of E^2 with polarised degree N

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime

Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N=N_1+N_2$ and kernel $\left\{(\deg_p(\mu_1)x,\gamma(x))\mid x\in E^2[N]\right\}$

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma) = N_1 N_2$ with N_i coprime Then $\gamma = \mu_1 \mu_2 = \nu_2 \nu_1$ with $\deg_p(\mu_1) = N_1$ and $\deg_p(\nu_1) = N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N = N_1 + N_2$ and kernel $\left\{ (\deg_p(\mu_1)x, \gamma(x)) \mid x \in E^2[N] \right\}$ Idea (Specific to Frobenius orientation)

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let $\deg_p(\gamma)=N_1N_2$ with N_i coprime Then $\gamma=\mu_1\mu_2=\nu_2\nu_1$ with $\deg_p(\mu_1)=N_1$ and $\deg_p(\nu_1)=N_2$ Then the 4-dimensional isogeny

$$\Gamma = \begin{pmatrix} \mu_1 & \widetilde{\mu_2} \\ -\nu_1 & \widetilde{\nu_2} \end{pmatrix}$$

has polarised degree $N = N_1 + N_2$ and kernel $\left\{ (\deg_p(\mu_1)x, \gamma(x)) \mid x \in E^2[N] \right\}$ Idea (Specific to Frobenius orientation)

Our
$$u \approx = \sqrt{\Delta} = \sqrt{p}$$

Set $N = u(2^e - u) \gg |\Delta| = p$ to get 4-dimensional isogeny Γ of degree 2^e

Obtain *u*-isogeny $\mu_i: E^2 \to A_{ii}$ as component of Γ

Improved timings

Parameter	Step 1	Step 2	Total time	N. Rerand.
2000	0.49 s	3.83 s	4.32 s	0.70
4000	3.25 s	22.8 s	26.0 s	1.25

Table: Step 1 and Step 2 when solving the norm equation with single sum of squares, in wall-clock seconds.

Thank you!

Paper https://eprint.iacr.org/2025/401

Implementation https://github.com/pegasis4d

Slides https://rueg.re/pegasis-tum

Working over F_p : Fast basis sampling

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$

Working over F_p : Fast basis sampling

Let $p \equiv 7 \pmod 8$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e \parallel p+1$ we have

$$E[2^e] \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let T_{desc} , $T_{\text{horiz},1}$, $T_{\text{horiz},2}$ points of 2-torsion

Lemma

Let $E: y^2 = g(x)$

An element x_p in F_p lifts to $P = (x_p, y_p)$

- (i) on *E* with ord(*P*) = 2^{e-1} iff $x_p x(T_{desc,1})$ a non-zero non-square (and $g(x_p)$ non-zero square)
- (ii) on E^t with ord(P) = 2^{e-1} iff $x_p x(T_{\text{desc},2})$ non-zero square (and $g(x_p)$ a non-zero non-square)