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Results

Impl. 500 1000 1500 2000 4000

SCALLOP* C++ 35s 750s
SCALLOP-HD* Sage 88s 1140s
PEARL-SCALLOP*  C++ 30s 58s 710s

) Sage 207s
KLaPoTi
Rust 1.95s
PEGASIS Sage 1.53s 4.21s 10.5s 21.3s 121s

Table: Time measured in wall-clock time. Stars indicate different measuring hardware.
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Oriented Actions

Imaginary quadratic order © = Z[a]

Supersingular Elliptic curve E/F 2

Primitive orientationt: O < End(E) defined by a — w with w primitive
Primitively oriented elliptic curve (E, )

Integral invertible ideal a with p } N(a) yields isogeny ¢, : E—= E,
..with ker(e,) = E[a] = ,, ker(a) and deg(ep,) = N(a)

...and if a principal then ¢, is an endomorphism

Moreover (¢,),(1) : O = End(E,); v = ¢,(v)®P,/[N(a)] is a primitive orientation
...s0 (E,, (@,). (1) is primitively oriented

Wesay @: E= E'is an O-isomorphism (E,t) = (E', () if (' = (), (1)
...and define SSP'(0) to be O-isomorphism classes of (E, 1)

Finally we get an action of CI(O) on SSp (O)

Theorem (Onuki) This action is transitive with at most two orbits
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The Ideal2Isogeny Construction

|

®y

—

Ea
~ ker(®) = {(N(a)x, @, (x)) | x € E,[deg,(®)]}
7. = {(N(@)x, ¢ () | x & E,[deg,(®)]}
E

—
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|

Norm equation deg,(®) = N(a) + N(b) = of
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Ea
~ ker(®) = {(N(a)x, @, (x)) | x € E,[deg,(®)]}
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The Ideal2Isogeny Construction

E
A
Norm equation deg,(®) = N(a) + N(b) = of
Requirements

®y

—

Ea
~ ker(®) = {(N(a)x, @, (x)) | x € E,[deg,(®)]}
" [(N(@)x, @4,(x)) | x € E,[deg, ()]}
E

—

1.f<e=vy(p+1) 2.gcd(N(a),N(b)) =1
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The Ideal2Isogeny Construction: Iteration #2

(Pu>E (pb>Ea
X

® E
by

>Ev

ker(®P)
={(UN(@)x, 0,8.0,8,() | x € E,[deg,(®)]}
= {(N@@, ), ,8.0,y)) | y € Eldeg,(®)]}
= {(N@®, ), 0,0:,(y) | v € Eldeg,(®)]}
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The Ideal2Isogeny Construction: Iteration #2

(pu (pb

E, —> E—>E,
_ ker(®)
®,
={(UN(@)x, 0,8.0,8,() | x € E,[deg,(®)]}
® E
= {(N@@u), 0,8:0,(y) | v € Eldeg,(®)]}
?,
v ={(N(@uly), @,@:4(y) | v € Eldeg,(®)]}
A, > E,

Norm equation deg,(®) = uN(a) + vN(b) = of
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The Ideal2Isogeny Construction: Iteration #2

E, Gyp @ E.
_ ker(®)
(pt
={(UN(@)x, 0,8.0,8,() | x € E,[deg,(®)]}
® E
= {(N@@u), 0,8:0,(y) | v € Eldeg,(®)]}
?,
v ={(N(@uly), @,@:4(y) | v € Eldeg,(®)]}
A, > E,

Norm equation deg,(®) = uN(a) + vN(b) = of
Requirements

1.f<e=vy(p+1) 2. gcd(uN(a),vN(b))=1 3.u=deg,(o,),v=_deg,(o,)


https://rueg.re/pegasis-tum

The Ideal2Isogeny Construction: Iteration i3

@, diag(e,)
A, — B4 —3 E!
diag(®;)
v
o E¢
®,
v v

\
A2 /4 v
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The Ideal2Isogeny Construction: Iteration i3

o, diag(ep,)
> B —— E{

Au a
diagi@) ker(®P)
¥ © ={uN()x, 0,diag(@0,)7,(x) | x € E,[deg,(®)]]
® - ={(N(@@,(v), ¢,diag{@,)¥)) | v € Eldeg,(®)]}
\2 L ={(N@)@,(v), ,diag(ez,)(y) | y € Eldeg,(®)]}
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The Ideal2Isogeny Construction: Iteration i3

@, diag(e,)
> E9 % Ed

Au a
diagi@) ker(®P)
¥ © ={uN()x, 0,diag(@0,)7,(x) | x € E,[deg,(®)]]
® - ={(N(@@,(v), ¢,diag{@,)¥)) | v € Eldeg,(®)]}
b L ={(N@)@,(v), ,diag(ez,)(y) | y € Eldeg,(®)]}
2 > A,

Norm equation deg,(®) = uN(a) + vN(b) = of
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The Ideal2Isogeny Construction: Iteration i3

A, @, , diag(wﬁ) ¢
ker(®P)
diag(@;) o
¥ = {(uN(@)x, 0, diag(@.0,)@,(x)) | x € E,[deg,(®)]}
O] E ~
= {(N@@u(y), 0,diag(@.0,))) | y € Eldeg,(®)]}
¥ U = {(N@@,(v), 0,diag(ex,)) | y € Eldeg,(®)]}
A2 > v

Norm equation deg,(®) = uN(a) + vN(b) = of
Requirements

1.f<e=vy(p+1) 2. gcd(uN(a),vN(b))=1 3.u=deg,(o,),v=_deg,(o,)
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Solvability of the norm equation: An idea

Recall

Ideals of O prime to the conductor factorise uniquely as product of prime ideals
Idea

Factor the ideals b = b,b, ¢ = ¢.¢, with action of b, ¢, “easy”

In practice

Factor so that N(b,), N(c.) are products of small primes split in O

Example O = Z[,/-p]

Here [b.] - E computed by successive Elkies isogenies defined over F),

Outlook

Compute easy part first, norm equation for by, ¢

uN(b,) + vN(c,) = 2f

easier to solve because N(b,)N(c,) < N(b)N(c)
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Solvability of the norm equation: The diagram

Ed
diag(e, )
o, diag(ey, )
A, > Ef s Ed
diag(®,,)
v
0 Ed
¢ diag(o,)
@,
v v

\
A > A,

d
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Solvability of the norm equation: The diagram

Ed
diag((pbe)
@, diag(¢p,, )
A, > Ef s Ed
diag(®,,)
v
® Ed < d
¢ ‘diagle,,)
®,
v v
A > A,

Norm equation deg,(®) = uN(b) + vN(c,) = of

er(®) = (N, ). 0,ioe @ 0,)0) | v €ELI2} and Ty, = i@


https://rueg.re/pegasis-tum

Constructing isogenies of prescribed degree

The isogenies ¢,, ¢,

rueg.re/pegasis-tum 11/ 20


https://rueg.re/pegasis-tum

Constructing isogenies of prescribed degree

The isogenies ¢,,®,

Dimension 1 ~ws Dimension 2 Kani-isogeny ®
Requires knowledge of the endomorphism ring (SQISign2D)


https://rueg.re/pegasis-tum

Constructing isogenies of prescribed degree

The isogenies ¢,, ¢,

Dimension 1 ~ws Dimension 2 Kani-isogeny ®
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 ~«ws Dimension 4 Kani-isogeny ®
Sums of squares (or QFESTA-style splitting using 4-dimensional isogenies)


https://rueg.re/pegasis-tum

Constructing isogenies of prescribed degree

The isogenies ¢,, ¢,

Dimension 1 ~ws Dimension 2 Kani-isogeny ®
Requires knowledge of the endomorphism ring (SQISign2D)

Dimension 2 ~«ws Dimension 4 Kani-isogeny ®
Sums of squares (or QFESTA-style splitting using 4-dimensional isogenies)

Dimension 4 ~ws Dimension 8 Kani-isogeny ®
Zahrin’s trick
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Constructing isogenies of prescribed degree

In dimension 2 with sum of two squares
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Constructing isogenies of prescribed degree

In dimension 2 with sum of two squares

Xu  Yu

Withu=x2+y2 o, =
—Yu X

) :E* > E?  hasdeg,(o,) =u
Theoremu = p'l(1 - pin = x2 + y2 if and only if k, even when p, = 3 (mod 4)
Idea

Factor out (with multiplicity 1) small primes r; = 3 (mod 4) that are split in O
Perform this part as chain of Elkies r;-isogenies ¢, .

If u = g,(x2 + y2) with g, product of “bad primes” r; = 3 (mod 4) then

(pu _ (puyrl cee (puyr’ O ) ( XU yu) : E2 N E3
0 (pu,r1 (pu,r, —Yu X

has deg,(®) = g,(x2 +y2) =u
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Rerandomisation

If we cannot solve the norm equation for [a] we can rerandomise
Pick small ideal [(] and compute [al] - ([1]72E)
Let’s look at some data ...
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Our algorithm

What we implemented

Step 1: Finding UV

Do (easy) Lagrange lattice reduction on the input ideal a
Iterate small equivalent representatives

Factor out all small ideals up to a small bound b = b_b,
Sort by norm of the non-smooth part b,

Try to solve the norm equation for the non-smooth part by, ¢,
Step 2: Computing ker(®)

Evaluate the isogeny @,

Evaluate the isogeny @ ¢, = @, @, /N(b.)N(c,)

Step 3: Compute the 4d-isogeny

Pass the kernel to 4d-library

Solve the twisting problem
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Timings of the steps

Parameter Step 1 Step 2 Step 3 Tot. Time
500 0.097s 0.48s 0.96s 1.53s
1000 0.21s 1.16s 2.84s 4.21s
1500 1.19s 2.85s 6.49s 10.5s
2000 1.68s 8.34s 11.3s 21.3s
4000 15.6s 52.8s 53.5s 122s

Table: SageMath 10.5 timings on Intel Core i5-1235U at 4.0 GHz, in wall-clock time.
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = x4 + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Vi V1
y= ( ; y_l) i E2 > E? has deg,(y) = (X2 + x2) + Aly? +y2)
Y2 V2
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = x4 + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Vi V1
y= ( ; y_l) i E2 > E? has deg,(y) = (X2 + x2) + Aly? +y2)
Y2 V2

Idea If N > |A| then m = N — |A|(y? + y2) > O often enough that we find
m = x? + x3 as sum of squares
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Constructing isogenies of prescribed degree

In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Consider y; = x4 + yl\/Z and y, = x, + yz\/Z inO=7Z+/AZ
Then

Yi V1
V= ( ; y_l) : E?2 > E? has deg,(y) = (X12 +x22) +A(y12 +y22)
Y2 V2

Idea If N > |A| then m = N — |A|(y? + y2) > 0 often enough that we find
m = x? + x3 as sum of squares
Heuristic If N > |A|, we can find endomorphism of E? with polarised degree N
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Moreover
Let deg,(y) = NN, with N; coprime
Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny
x
V1 V2

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € EZ[N]}
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In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover

Let deg,(y) = NN, with N; coprime

Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny

—Vi Vo

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € EZ[N]}
Idea (Specific to Frobenius orientation)
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Constructing isogenies of prescribed degree
In dimension 2 with QFESTA splitting via 4-dimensional isogeny

Moreover
Let deg,(y) = NN, with N; coprime
Theny = pyup = vyvy with deg, (1) = Ny and deg,(v4) = N,
Then the 4-dimensional isogeny
x
V1 V2

has polarised degree N = N; + N, and kernel {(degp(ul)x,y(x)) | x € E2[N]}
Idea (Specific to Frobenius orientation)

Ouru ~=+A = Jp

Set N = u(2® — u) > |A| = pto get 4-dimensional isogeny I of degree 2°
Obtain u-isogeny y; : E2 - A, as component of I
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Improved timings

Parameter Step 1 Step 2 Total time N. Rerand.

2000 0.49s 3.83s 4.32s 0.70
4000 3.25s 22.8s 26.0s 1.25

Table: Step 1 and Step 2 when solving the norm equation with single sum of squares, in
wall-clock seconds.
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Thank you!

Paper https://eprint.iacr.org/2025/401
Implementation https://github.com/pegasis4d

Slides https://rueg.re/pegasis-tum
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Working over F,: Fast basis sampling

Letp =7 (mod 8) and E/F, oriented by Z [(,/=p + 1) /2]
Then for 2¢||p + 1 we have

E[2¢]1=2Z /o7 +Z /217

Let Tyese> Thoriz 1+ Thoriz,2 POINts of 2-torsion
Lemma

Let E : y? = g(x)

An element x, in F, lifts to P = (x,, y),)

(i) on Ewith ord(P) = 2¢7% iff x, — X(Tyesc.1) @ NON-ZEro non-square
(and g(x,) non-zero square)

(i) on E* with ord(P) = 2671 iff X, — X(Tyesc 2) NON-zETO SQUare
(and g(x,) a non-zero non-square)
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