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Cryptographic Group Actions

(Unrestricted) Cryptographic Group Action

Efficiently Compute 𝑔𝑥 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋

Hard To recover 𝑔 from (𝑥 , 𝑔𝑥)

Restricted Cryptographic Group Action

Efficiently Compute 𝑔𝑥 for polynomially many 𝑔 ∈ 𝐺 and for all 𝑥 ∈ 𝑋

Hard To recover 𝑔 from (𝑥 , 𝑔𝑥)

(Commutative) Cryptographic Group actions are a powerful construction

Can build many cryptographic primitives

NIKE, (Threshold) Signatures, SSP-OT, PRF, …
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Elliptic curves

Base field 𝑘 = 𝔽𝑞
𝐸 = {(𝑥, 𝑦) ∈ 𝑘al ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏}

𝑃 = (𝑃𝑥 , 𝑃𝑦 ), 𝑄 = (𝑄𝑥 , 𝑄𝑦 ) ∈ 𝐸
When 𝑃𝑥 ≠ 𝑄𝑥

(𝑃 + 𝑄)𝑥 = (
𝑄𝑦 − 𝑃𝑦
𝑄𝑥 − 𝑃𝑥

)
2

− 𝑃𝑥 − 𝑄𝑥

(𝑃 + 𝑄)𝑦 = (
𝑄𝑦 − 𝑃𝑦
𝑄𝑥 − 𝑃𝑥

)(𝑃𝑥 − (𝑃 + 𝑄)𝑥 ) − 𝑃𝑦

When 𝑃𝑥 = 𝑄𝑥 , 𝑃𝑦 = 𝑄𝑦 ≠ 0

(𝑃 + 𝑄)𝑥 = (
3𝑃2

𝑥 + 𝑎
2𝑃𝑦

)
2

− 2𝑃𝑥

(𝑃 + 𝑄)𝑦 = (
3𝑃2

𝑥 + 𝑎
2𝑃𝑦

)(𝑃𝑥 − (𝑃 + 𝑄)𝑥 ) − 𝑃𝑦

When 𝑃𝑥 = 𝑄𝑥 , 𝑃𝑦 = −𝑄𝑦

𝑃 + 𝑄 = 𝒪
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Isogenies

Morphism of Curves

𝜑∶ 𝐸 −→ 𝐸 ′ (𝑥 , 𝑦) ↦ (
𝜑1(𝑥 , 𝑦)
𝜑2(𝑥 , 𝑦)

,
𝜑3(𝑥 , 𝑦)
𝜑4(𝑥 , 𝑦)

)

Morphism of Groups

𝜑(𝑃 + 𝑄) = 𝜑(𝑃) + 𝜑(𝑄)

𝜑(𝒪𝐸 ) = 𝒪𝐸 ′

Example Scalar multiplication 𝐸 −→ 𝐸; 𝑃 ↦ 𝑛𝑃 = 𝑃 + 𝑃 +⋯ + 𝑃

First isomorphism theorem

{𝐺 ⊆ 𝐸 finite} ↭ {nonzero isogenies 𝐸 −→ ∗}

𝐺 ↦ 𝜑𝐺 with ker(𝜑𝐺 ) = 𝐺

ker(𝜑) ↤ 𝜑

Because nonzero isogenies 𝐸 −→ 𝐸 ′ are surjective, we write 𝐸′ = 𝐸/ ker(𝜑)
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𝐺 ↦ 𝜑𝐺 with ker(𝜑𝐺 ) = 𝐺

ker(𝜑) ↤ 𝜑

Because nonzero isogenies 𝐸 −→ 𝐸 ′ are surjective, we write 𝐸′ = 𝐸/ ker(𝜑)
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Cryptography from Isogenies

Isogeny Problem
Given two isogenous elliptic curves, find an isogeny between them

Common isogeny regime

𝐸0 𝐸

Public Parameter Secret Key Public Key

𝜑
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Motivating a group action: key exchange

Alice and Bob pick finite subgroups 𝐴, 𝐵 ⊆ 𝐸0

𝐸0 𝐸𝐴 = 𝐸0/𝐴

𝐸𝐵 = 𝐸0/𝐵

𝐸𝑆

𝜑𝐴

𝜑𝐵 𝜑𝐵′???

𝜑𝐴′
???

Problem How can Bob encode his secret subgroup in Alice’s Public Key?

Attempt 1 Alice gives Bob some hints
Attempt 2 Global Atlas: Restrict to special subgroups
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𝜑𝐴

𝜑𝐵 𝜑𝐵′???

𝜑𝐴′
???

Problem How can Bob encode his secret subgroup in Alice’s Public Key?

Attempt 1 Torsion point information (SIKE, Polynomial time classical attack)
Attempt 2 Orientations (CRS, CSIDH, Subexponential Quantum Attack)
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The Global Atlas: Orientations

Consider supersingular 𝐸/𝔽𝑝

Recall 𝐸/𝔽𝑝 means 𝐸 = {(𝑥, 𝑦) ∈ 𝑘al ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝒪} with 𝑎, 𝑏 ∈ 𝔽𝑝

Fact (Frobenius Endomorphism) 𝜋 ∶ 𝐸 −→ 𝐸; (𝑥, 𝑦) ↦ (𝑥𝑝 , 𝑦𝑝 ) is an isogeny

Fact 𝜋 generates an imaginary quadratic order ℤ[𝜋] = ℤ + 𝜋ℤ ⊆ End(𝐸)

Insight Independent of the curve!

Idea Alice and Bob pick secret data from ℤ[𝜋]
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The Global Atlas: How to embed information from ℤ[𝜋]

Alice picks an ideal 𝐼𝐴 ⊆ ℤ[𝜋]

Fact Every ideal is of the form 𝐼𝐴 = 𝛼1ℤ + 𝛼2ℤ

Given 𝐸, she computes

𝐴 = ⋂
𝜎∈𝐼𝐴

ker(𝜎 ∶ 𝐸 −→ 𝐸) = ker(𝛼1 ∶ 𝐸 −→ 𝐸) ∩ ker(𝛼1 ∶ 𝐸 −→ 𝐸)

Conclusion
We can turn ideals 𝐼𝐴 ⊆ ℤ[𝜋] into isogenies 𝜑𝐴 ∶ 𝐸 −→ 𝐸𝐴 starting on any curve 𝐸
…in particular we can use 𝐼𝐴 to go from 𝐸 to 𝐸𝐴 by computing 𝜑𝐴
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The Global Atlas: The Class Group

Fact Principal ideals induce endomorphisms 𝐸 −→ 𝐸
𝐼𝐴 = 𝛼1ℤ[𝜋] ⇝ 𝐴 =ker(𝜑𝐴 ) = ker(𝛼1) ⇝ 𝜑𝐴 = 𝛼1 ∶ 𝐸 −→ 𝐸 = 𝐸𝐴

Fact 𝐼, 𝐽 ideals, then 𝐸
𝜑𝐼−→ 𝐸𝐼

𝜑𝐽−→ 𝐸𝐼𝐽 is the same as 𝐸
𝜑𝐼𝐽−−→ 𝐸𝐼𝐽

Want to form the quotient

𝑄 = {ideals 𝐼 ⊆ ℤ[𝜋]}/{principal ideals 𝛼ℤ[𝜋] ⊆ ℤ[𝜋]}
Turns out
𝐼 ⊆ ℤ[𝜋] ideal then 𝐼𝐼 = N(𝐼)ℤ[𝜋] principal
𝑄 is a multiplicative group, where 𝐼 is the inverse of 𝐼
𝑄 is the Ideal Class Group Cl(ℤ[𝜋])

Theorem
Cl(ℤ[𝜋]) acts regularly on all supersingular elliptic curves defined over 𝔽𝑝
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CSIDH: The restricted action

Suppose we want to act by some element [𝐼] in the Ideal Class Group

Cost of CSIDH
If N(𝐼) = ∏𝑝𝑒𝑖𝑖 the cost of evaluation is Θ̃ (∑ 𝑒𝑖𝑝𝑖)

Problem
Try to use 2-dim lattice reduction to find equivalent ideal [𝐽] = [𝐼]
…finds 𝐽 with √𝑝 ≈ N(𝐽) ≤ N(𝐼)
…this does not help with smoothness

Solution of CSIDH
Only act by ideals with smooth norm!
These can be decomposed as the action of many small-normed ideals

Result Practically and asymptotically efficient restricted action
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PEGASIS: Unrestricting using Higher-Dimensions

PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies

Joint with Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur
Herledan Le Merdy, Riccardo Invernizzi, Damien Robert, Frederik Vercauteren and
Benjamin Wesolowski

https://eprint.iacr.org/2025/401 (To appear at Crypto’25)

First post-quantum commutative unrestricted cryptographic group action that is
both asymptotically and practically efficient
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Main ingredient: Clapoti

Theorem (Page-Robert, 2023)
Given
[𝐼] = [𝐽] equivalent ideals, 𝑢 = 𝑢21 + 𝑢22 +⋯+ 𝑢2𝑔 , 𝑣 = 𝑣21 + 𝑣22 +⋯+ 𝑣2𝑔

Let

𝑑 = 𝑢N(𝐼) + 𝑣N(𝐽) = ∏𝑝𝑒𝑖𝑖 and 𝑘 minimal so 𝐸[𝑑] ⊆ 𝐸(𝔽𝑝𝑘 )

There exists an algorithm which computes 𝜑𝐼 ∶ 𝐸 −→ 𝐸𝐼 in time

Θ̃ (𝑘∑𝑒𝑖𝑝
2𝑔
𝑖 )

Important Tool for construction isogenies in dimension 2𝑔

Goal 𝑑 as smooth as possible, 𝑘 as small as possible, 𝑔 as small as possible

In practice Want 𝑑 = 2𝑛 , 𝑘 = 2, 𝑔 ≤ 2
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Conflicting requirements

𝑑 = 2𝑛 (Target solution of 𝑢N(𝐼) + 𝑣N(𝐽) = 𝑑)

Guaranteed solutions for 𝑢N(𝐼) + 𝑣N(𝐽) = 2𝑛 when 2𝑛 ≥ N(𝐼)N(𝐽) (Coin Problem)
…but Minkowski’s bound only gives us [𝐽] = [𝐼] with N(𝐽) ≈ √𝑝
…so 𝑝 ≤ 2𝑛

= 2⌈log2(𝑝)⌉

𝑘 = 2 (Extension degree we want for 𝐸[𝑑] ⊆ 𝐸(𝔽𝑝𝑘 ))

𝐸 supersingular, so #𝐸(𝔽𝑝2 ) = (𝑝 + 1)2 (Need supersingularity!)

…if 𝐸[2𝑛] ⊆ 𝐸(𝔽𝑝2 ), then 2𝑛 must divide 𝑝 + 1 (because #𝐸[2𝑛] = 22𝑛)

…in particular 2𝑛 = 2⌊log2(𝑝)⌋−𝜀 < 𝑝

Core Problem
Even the smallest equivalent ideals are too big
…but not by much
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Resolving the tension

Idea
Factor ideal into smooth-normed and rough-normed part 𝐼 = 𝐼𝑠𝐼𝑟 , 𝐽 = 𝐽𝑠𝐽𝑟
The smooth parts can be computed like in CSIDH

Problem The ideals 𝐼𝑟 , 𝐽𝑟 are no longer equivalent
…but they almost are [𝐼𝑟𝐽𝑟 ] = [𝐼𝑠𝐽𝑠 ] (not trivial, but easy to evaluate)

Tweak Page-Robert’s algorithm
Search for 𝑢, 𝑣 ≥ 0 such that 𝑑 = 𝑢N(𝐼𝑟 ) + 𝑣N(𝐽𝑟 ) = 2𝑛

…works because N(𝐼𝑟 ), N(𝐽𝑟 ) is small enough

In fact So many solutions 𝑢, 𝑣 that we can find 𝑢 = 𝑢21 + 𝑢22 , 𝑣 = 𝑣21 + 𝑣22
…algorithm only needs (2𝑔 = 4)-dimensional isogeny computation

In fact Using 𝑥-only arithmetic, we get away with 𝑘 = 1
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Problem The ideals 𝐼𝑟 , 𝐽𝑟 are no longer equivalent
…but they almost are [𝐼𝑟𝐽𝑟 ] = [𝐼𝑠𝐽𝑠 ] (not trivial, but easy to evaluate)

Tweak Page-Robert’s algorithm
Search for 𝑢, 𝑣 ≥ 0 such that 𝑑 = 𝑢N(𝐼𝑟 ) + 𝑣N(𝐽𝑟 ) = 2𝑛

…works because N(𝐼𝑟 ), N(𝐽𝑟 ) is small enough

In fact So many solutions 𝑢, 𝑣 that we can find 𝑢 = 𝑢21 + 𝑢22 , 𝑣 = 𝑣21 + 𝑣22
…algorithm only needs (2𝑔 = 4)-dimensional isogeny computation

In fact Using 𝑥-only arithmetic, we get away with 𝑘 = 1
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Implementation Results

Lang. 128 256 375 512 1024
Re
st
ric
te
d CSIDH* C 40ms

SQALE* C 5.75s**

dCTIDH* C 350ms**

Un
re
st
ric
te
d

SCALLOP* C++ 35s 750s

SCALLOP-HD* Sage 88s 1140s

PEARL-SCALLOP* C++ 30s 58s 710s

KLaPoTi
Sage 207s

Rust 1.95s

PEGASIS Sage 1.53s 4.21s 10.5s 21.3s 121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.
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Thank you for your attention

PEGASIS Paper https://eprint.iacr.org/2025/401 (To appear at Crypto’25)

PEGASIS Implementation https://github.com/pegasis4d

Slides https://rueg.re/mathsofpqc25

Ask me anything (I have bonus slides!)

https://eprint.iacr.org/2025/401
https://github.com/pegasis4d
https://rueg.re/mathsofpqc25


The Ideal2Isogeny Construction

Want to compute [𝔞] ⋅ 𝐸 = 𝐸𝔞
Let [𝔞] = [𝔟] = [𝔠]
Assume N(𝔟), N(𝔠) coprime

𝐸 𝐸𝔞

Φ

𝐸′

𝐸

𝜑𝔟

𝜑𝔠

ker(Φ) = {(N(𝔟)𝑥, 𝜑𝔠𝜑𝔟(𝑥)) ∣ 𝑥 ∈ 𝐸[degp(Φ)]}

= {(N(𝔟)𝑥, 𝜑𝔠𝔟(𝑥)) ∣ 𝑥 ∈ 𝐸[degp(Φ)]}

Norm equation degp(Φ) = N(𝔟) + N(𝔠) != 2𝑓

Requirements

1. 𝑓 ≤ 𝑣2(𝑝 + 1) − 3 2. N(𝔟), N(𝔠) coprime
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The Ideal2Isogeny Construction: Iteration #2

Want to compute [𝔞] ⋅ 𝐸 = 𝐸𝔞

Let [𝔞] = [𝔟] = [𝔠], 𝜑𝑢 ∶ 𝐸 −→ 𝐸𝑢 , 𝜑𝑣 ∶ 𝐸 −→ 𝐸𝑣
Assume 𝑢N(𝔟), 𝑣N(𝔠) coprime

𝐸𝑢 𝐸 𝐸𝔞

Φ

𝐸

𝐸′

𝐸𝑣

𝜑𝑢 𝜑𝔟

𝜑𝔠

𝜑𝑣

ker(Φ)

= {(𝑢N(𝔟)𝑥, 𝜑𝑣𝜑𝔠𝜑𝔟𝜑𝑢 (𝑥)) ∣ 𝑥 ∈ 𝐸𝑢[degp(Φ)]}

= {(𝑢N(𝔟)𝑥, 𝜑𝑣𝜑𝔠𝔟𝜑𝑢 (𝑥)) ∣ 𝑥 ∈ 𝐸𝑢[degp(Φ)]}

Norm equation degp(Φ) = 𝑢N(𝔟) + 𝑣N(𝔠) != 2𝑓

Requirements

1. 𝑓 ≤ 𝑣2(𝑝 + 1) − 3 2. 𝑢N(𝔟), 𝑣N(𝔠) coprime 3. 𝑢 = degp(𝜑𝑢 ), 𝑣 = degp(𝜑𝑣 )
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1. 𝑓 ≤ 𝑣2(𝑝 + 1) − 3 2. 𝑢N(𝔟), 𝑣N(𝔠) coprime 3. 𝑢 = degp(𝜑𝑢 ), 𝑣 = degp(𝜑𝑣 )
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The Ideal2Isogeny Construction: Iteration #3
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Working over 𝐹𝑝: Fast basis sampling

Let 𝑝 ≡ 7 (mod 8) and 𝐸/𝐹𝑝 oriented by ℤ [(√−𝑝 + 1) /2]

Then for 2𝑒 || 𝑝 + 1 we have

𝐸[2𝑒](𝐹𝑝 ) ≅ ℤ/2ℤ + ℤ/2𝑒−1ℤ

Let 𝑇desc, 𝑇horiz,1, 𝑇horiz,2 points of 2-torsion
Lemma
Let 𝐸 ∶ 𝑦2 = 𝑔(𝑥)
An element 𝑥𝑝 in 𝐹𝑝 lifts to 𝑃 = (𝑥𝑝 , 𝑦𝑝 )

(i) on 𝐸 with ord(𝑃) = 2𝑒−1 iff 𝑥𝑝 − 𝑥(𝑇desc,1) a non-zero non-square
(and 𝑔(𝑥𝑝 ) non-zero square )

(ii) on 𝐸𝑡 with ord(𝑃) = 2𝑒−1 iff 𝑥𝑝 − 𝑥(𝑇desc,2) non-zero square
(and 𝑔(𝑥𝑝 ) a non-zero non-square)
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