Workshop on the Mathematics of Post-Quantum Cryptography 6th of June 2025

On Cryptographic Group Actions from Isogenies

Ryan Rueger IBM Research Zurich & Technical University of Munich

(Unrestricted) Cryptographic Group Action

Efficiently Compute gx for all $g \in G$ and $x \in X$

Hard To recover g from (x, gx)

(Unrestricted) Cryptographic Group Action

Efficiently Compute gx for all $g \in G$ and $x \in X$

Hard To recover g from (x, gx)

Restricted Cryptographic Group Action

Efficiently Compute gx for polynomially many $g \in G$ and for all $x \in X$

Hard To recover g from (x, gx)

(Unrestricted) Cryptographic Group Action

Efficiently Compute gx for all $g \in G$ and $x \in X$

Hard To recover g from (x, gx)

Restricted Cryptographic Group Action

Efficiently Compute gx for polynomially many $g \in G$ and for all $x \in X$

Hard To recover g from (x, gx)

(Commutative) Cryptographic Group actions are a powerful construction

Can build many cryptographic primitives

NIKE, (Threshold) Signatures, SSP-OT, PRF, ...

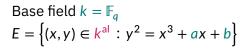
Curves

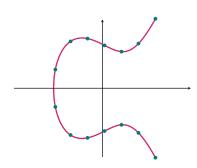
Curves

Base field
$$k = \mathbb{F}_q$$

 $E = \left\{ (x, y) \in k^{al} : y^2 = x^3 + ax + b \right\}$

Curves



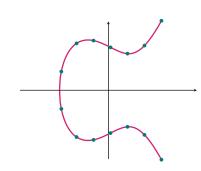


Curves

Groups

Base field
$$k = \mathbb{F}_q$$

 $E = \left\{ (x, y) \in k^{al} : y^2 = x^3 + ax + b \right\}$



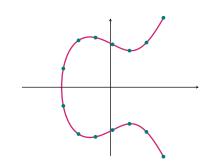
$E(L) = \{(x, y) \in E \mid x, y \in L\}$

rueg.re/mathsofpqc25

Curves

Base field
$$k = \mathbb{F}_q$$

 $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$

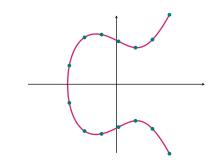


$$E(L) = \{(x, y) \in E \mid x, y \in L\}$$

Curves

Base field
$$k = \mathbb{F}_q$$

 $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$



 $E(L) = \{(x, y) \in E \mid x, y \in L\}$

Groups

$$P = (P_x, P_y), Q = (Q_x, Q_y) \in E$$

When $P_x \neq Q_x$

$$(P + Q)_{x} = \left(\frac{Q_{y} - P_{y}}{Q_{x} - P_{x}}\right)^{2} - P_{x} - Q_{x}$$
$$(P + Q)_{y} = \left(\frac{Q_{y} - P_{y}}{Q_{x} - P_{x}}\right)(P_{x} - (P + Q)_{x}) - P_{y}$$

When $P_x = Q_x, P_y = Q_y \neq 0$

$$(P+Q)_{x} = \left(\frac{3P_{x}^{2}+a}{2P_{y}}\right)^{2} - 2P_{x}$$
$$(P+Q)_{y} = \left(\frac{3P_{x}^{2}+a}{2P_{y}}\right)(P_{x} - (P+Q)_{x}) - P_{y}$$

When $P_x = Q_x$, $P_y = -Q_y$

 $P + Q = \mathcal{O}$

Morphism of Curves

$$\varphi: E \to E' \quad (x,y) \mapsto \left(\frac{\varphi_1(x,y)}{\varphi_2(x,y)}, \frac{\varphi_3(x,y)}{\varphi_4(x,y)}\right)$$

Morphism of Curves

$$\varphi: E \to E' \quad (x, y) \mapsto \left(\frac{\varphi_1(x, y)}{\varphi_2(x, y)}, \frac{\varphi_3(x, y)}{\varphi_4(x, y)}\right)$$

Morphism of Groups

$$\begin{split} \varphi(P+Q) &= \varphi(P) + \varphi(Q) \\ \varphi(\mathcal{O}_E) &= \mathcal{O}_{E'} \end{split}$$

Morphism of Curves

Morphism of Groups

$$\varphi: E \to E' \quad (x, y) \mapsto \left(\frac{\varphi_1(x, y)}{\varphi_2(x, y)}, \frac{\varphi_3(x, y)}{\varphi_4(x, y)}\right)$$

$$\varphi(P + Q) = \varphi(P) + \varphi(Q)$$
$$\varphi(\mathcal{O}_E) = \mathcal{O}_{E'}$$

Example Scalar multiplication $E \rightarrow E; P \mapsto nP = P + P + \dots + P$

Morphism of Curves

Morphism of Groups

$$\varphi: E \to E' \quad (x,y) \mapsto \left(\frac{\varphi_1(x,y)}{\varphi_2(x,y)}, \frac{\varphi_3(x,y)}{\varphi_4(x,y)}\right)$$

$$\varphi(P+Q) = \varphi(P) + \varphi(Q)$$
$$\varphi(\mathcal{O}_E) = \mathcal{O}_{E'}$$

Example Scalar multiplication $E \rightarrow E; P \mapsto nP = P + P + \dots + P$

First isomorphism theorem

$$\{G \subseteq E \text{ finite}\} \iff \{\text{nonzero isogenies } E \to *\}$$
$$G \mapsto \varphi_G \text{ with } \ker(\varphi_G) = G$$
$$\ker(\varphi) \leftrightarrow \varphi$$

Morphism of Curves

Morphism of Groups

$$\varphi: E \to E' \quad (x, y) \mapsto \left(\frac{\varphi_1(x, y)}{\varphi_2(x, y)}, \frac{\varphi_3(x, y)}{\varphi_4(x, y)}\right)$$

$$\varphi(P + Q) = \varphi(P) + \varphi(Q)$$
$$\varphi(\mathcal{O}_E) = \mathcal{O}_{E'}$$

Example Scalar multiplication $E \rightarrow E; P \mapsto nP = P + P + \dots + P$

First isomorphism theorem

$$\{G \subseteq E \text{ finite}\} \iff \{\text{nonzero isogenies } E \to *\}$$
$$G \mapsto \varphi_G \text{ with } \ker(\varphi_G) = G$$
$$\ker(\varphi) \leftrightarrow \varphi$$

Because nonzero isogenies $E \rightarrow E'$ are surjective, we write $E' = E/\ker(\varphi)$

rueg.re/mathsofpqc25

Cryptography from Isogenies

Isogeny Problem

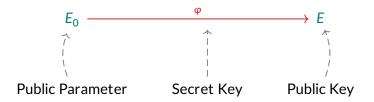
Given two isogenous elliptic curves, find an isogeny between them

Cryptography from Isogenies

Isogeny Problem

Given two isogenous elliptic curves, find an isogeny between them

Common isogeny regime



Alice and Bob pick finite subgroups $A, B \subseteq E_0$

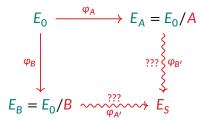
Alice and Bob pick finite subgroups $A, B \subseteq E_0$

$$E_{0} \xrightarrow{\varphi_{A}} E_{A} = E_{0}/A$$

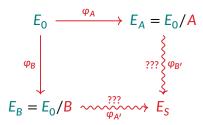
$$\downarrow^{\varphi_{B}}$$

$$E_{B} = E_{0}/B$$

Alice and Bob pick finite subgroups $A, B \subseteq E_0$

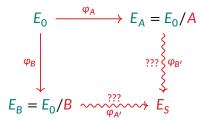


Alice and Bob pick finite subgroups $A, B \subseteq E_0$



Problem How can Bob encode his secret subgroup in Alice's Public Key?

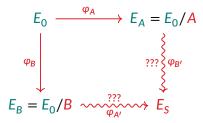
Alice and Bob pick finite subgroups $A, B \subseteq E_0$



Problem How can Bob encode his secret subgroup in Alice's Public Key?

Attempt 1 Alice gives Bob some hints

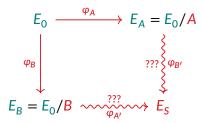
Alice and Bob pick finite subgroups $A, B \subseteq E_0$



Problem How can Bob encode his secret subgroup in Alice's Public Key?

Attempt 1 Alice gives Bob some hints Attempt 2 Global Atlas: Restrict to special subgroups

Alice and Bob pick finite subgroups $A, B \subseteq E_0$



Problem How can Bob encode his secret subgroup in Alice's Public Key?

Attempt 1 *Torsion point information* (SIKE, Polynomial time classical attack) Attempt 2 *Orientations* (CRS, CSIDH, Subexponential Quantum Attack)

Consider supersingular E/\mathbb{F}_p

Consider supersingular E/\mathbb{F}_p

Recall E/\mathbb{F}_p means $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$ with $a, b \in \mathbb{F}_p$

Consider supersingular E/\mathbb{F}_p

Recall E/\mathbb{F}_p means $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$ with $a, b \in \mathbb{F}_p$

Fact (Frobenius Endomorphism) π : $E \rightarrow E$; $(x, y) \mapsto (x^p, y^p)$ is an isogeny

Consider supersingular E/\mathbb{F}_p

Recall E/\mathbb{F}_p means $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$ with $a, b \in \mathbb{F}_p$

Fact (Frobenius Endomorphism) $\pi: E \to E; (x, y) \mapsto (x^p, y^p)$ is an isogeny

Fact π generates an imaginary quadratic order $\mathbb{Z}[\pi] = \mathbb{Z} + \pi \mathbb{Z} \subseteq \text{End}(E)$

Consider supersingular E/\mathbb{F}_p

Recall E/\mathbb{F}_p means $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$ with $a, b \in \mathbb{F}_p$

Fact (Frobenius Endomorphism) $\pi: E \to E; (x, y) \mapsto (x^p, y^p)$ is an isogeny

Fact π generates an imaginary quadratic order $\mathbb{Z}[\pi] = \mathbb{Z} + \pi \mathbb{Z} \subseteq \text{End}(E)$

Insight Independent of the curve!

Consider supersingular E/\mathbb{F}_p

Recall E/\mathbb{F}_p means $E = \{(x, y) \in k^{al} : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$ with $a, b \in \mathbb{F}_p$

Fact (Frobenius Endomorphism) $\pi: E \to E; (x, y) \mapsto (x^p, y^p)$ is an isogeny

Fact π generates an imaginary quadratic order $\mathbb{Z}[\pi] = \mathbb{Z} + \pi \mathbb{Z} \subseteq \text{End}(E)$

Insight Independent of the curve!

Idea Alice and Bob pick secret data from $\mathbb{Z}[\pi]$

The Global Atlas: How to embed information from $\mathbb{Z}[\pi]$

Alice picks an ideal $I_A \subseteq \mathbb{Z}[\pi]$

Alice picks an ideal $I_A \subseteq \mathbb{Z}[\pi]$

Fact Every ideal is of the form $I_A = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z}$

Alice picks an ideal $I_A \subseteq \mathbb{Z}[\pi]$

Fact Every ideal is of the form $I_A = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z}$

Given *E*, she computes

$$A = \bigcap_{\sigma \in \mathbf{I}_{A}} \ker(\sigma : E \to E) = \ker(\alpha_{1} : E \to E) \cap \ker(\alpha_{1} : E \to E)$$

Alice picks an ideal $I_A \subseteq \mathbb{Z}[\pi]$

Fact Every ideal is of the form $I_A = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z}$

Given *E*, she computes

$$A = \bigcap_{\sigma \in I_A} \ker(\sigma : E \to E) = \ker(\alpha_1 : E \to E) \cap \ker(\alpha_1 : E \to E)$$

Conclusion

We can turn ideals $I_A \subseteq \mathbb{Z}[\pi]$ into isogenies $\varphi_A : E \to E_A$ starting on any curve E...in particular we can use I_A to go from E to E_A by computing φ_A

Fact Principal ideals induce endomorphisms $E \rightarrow E$

 $I_{A} = \alpha_{1}\mathbb{Z}[\pi] \quad \rightsquigarrow \quad A = \ker(\varphi_{A}) = \ker(\alpha_{1}) \quad \rightsquigarrow \quad \varphi_{A} = \alpha_{1} : E \to E = E_{A}$

Fact Principal ideals induce endomorphisms $E \rightarrow E$

 $I_{A} = \alpha_{1}\mathbb{Z}[\pi] \quad \rightsquigarrow \quad A = \ker(\varphi_{A}) = \ker(\alpha_{1}) \quad \rightsquigarrow \quad \varphi_{A} = \alpha_{1} : E \to E = E_{A}$

Fact I, J ideals, then $E \xrightarrow{\varphi_I} E_I \xrightarrow{\varphi_J} E_{IJ}$ is the same as $E \xrightarrow{\varphi_{IJ}} E_{IJ}$

Fact Principal ideals induce endomorphisms $E \rightarrow E$

 $I_{A} = \alpha_{1}\mathbb{Z}[\pi] \quad \rightsquigarrow \quad A = \ker(\varphi_{A}) = \ker(\alpha_{1}) \quad \rightsquigarrow \quad \varphi_{A} = \alpha_{1} : E \to E = E_{A}$

Fact I, J ideals, then $E \xrightarrow{\phi_I} E_I \xrightarrow{\phi_J} E_{IJ}$ is the same as $E \xrightarrow{\phi_{IJ}} E_{IJ}$

Want to form the quotient

$$Q = \{ \text{ideals } I \subseteq \mathbb{Z}[\pi] \} / \{ \text{principal ideals } \alpha \mathbb{Z}[\pi] \subseteq \mathbb{Z}[\pi] \}$$

Fact Principal ideals induce endomorphisms $E \rightarrow E$

 $I_{A} = \alpha_{1}\mathbb{Z}[\pi] \quad \rightsquigarrow \quad A = \ker(\varphi_{A}) = \ker(\alpha_{1}) \quad \rightsquigarrow \quad \varphi_{A} = \alpha_{1} : E \to E = E_{A}$

Fact I, J ideals, then $E \xrightarrow{\phi_I} E_I \xrightarrow{\phi_J} E_{IJ}$ is the same as $E \xrightarrow{\phi_{IJ}} E_{IJ}$

Want to form the quotient

$$Q = \{ \text{ideals } I \subseteq \mathbb{Z}[\pi] \} / \{ \text{principal ideals } \alpha \mathbb{Z}[\pi] \subseteq \mathbb{Z}[\pi] \}$$

Turns out

 $I \subseteq \mathbb{Z}[\pi]$ ideal then $I\overline{I} = N(I)\mathbb{Z}[\pi]$ principal Q is a multiplicative group, where \overline{I} is the inverse of I Q is the Ideal Class Group Cl($\mathbb{Z}[\pi]$)

Fact Principal ideals induce endomorphisms $E \rightarrow E$

 $I_{A} = \alpha_{1}\mathbb{Z}[\pi] \quad \rightsquigarrow \quad A = \ker(\varphi_{A}) = \ker(\alpha_{1}) \quad \rightsquigarrow \quad \varphi_{A} = \alpha_{1} : E \to E = E_{A}$

Fact I, J ideals, then $E \xrightarrow{\phi_I} E_I \xrightarrow{\phi_J} E_{IJ}$ is the same as $E \xrightarrow{\phi_{IJ}} E_{IJ}$

Want to form the quotient

$$Q = \{ \text{ideals } I \subseteq \mathbb{Z}[\pi] \} / \{ \text{principal ideals } \alpha \mathbb{Z}[\pi] \subseteq \mathbb{Z}[\pi] \}$$

Turns out

 $I \subseteq \mathbb{Z}[\pi]$ ideal then $I\overline{I} = N(I)\mathbb{Z}[\pi]$ principal Q is a multiplicative group, where \overline{I} is the inverse of I Q is the Ideal Class Group Cl($\mathbb{Z}[\pi]$)

Theorem

 $Cl(\mathbb{Z}[\pi])$ acts regularly on all supersingular elliptic curves defined over \mathbb{F}_p

rueg.re/mathsofpqc25

Suppose we want to act by some element [I] in the Ideal Class Group

Suppose we want to act by some element [I] in the Ideal Class Group

Cost of CSIDH If $N(I) = \prod p_i^{e_i}$ the cost of evaluation is $\tilde{\Theta}(\sum e_i p_i)$

Suppose we want to act by some element [I] in the Ideal Class Group

Cost of CSIDH

If $N(I) = \prod p_i^{e_i}$ the cost of evaluation is $\tilde{\Theta}(\sum e_i p_i)$

Problem

Try to use 2-dim lattice reduction to find equivalent ideal [J] = [I]...finds J with $\sqrt{p} \approx N(J) \leq N(I)$...this does not help with smoothness

Suppose we want to act by some element [I] in the Ideal Class Group

Cost of CSIDH

If $N(I) = \prod p_i^{e_i}$ the cost of evaluation is $\tilde{\Theta}(\sum e_i p_i)$

Problem

Try to use 2-dim lattice reduction to find equivalent ideal [J] = [I]...finds J with $\sqrt{p} \approx N(J) \leq N(I)$...this does not help with smoothness

Solution of CSIDH

Only act by ideals with smooth norm!

These can be decomposed as the action of many small-normed ideals

Suppose we want to act by some element [I] in the Ideal Class Group

Cost of CSIDH

If $N(I) = \prod p_i^{e_i}$ the cost of evaluation is $\tilde{\Theta}(\sum e_i p_i)$

Problem

Try to use 2-dim lattice reduction to find equivalent ideal [J] = [I]...finds J with $\sqrt{p} \approx N(J) \leq N(I)$...this does not help with smoothness

Solution of CSIDH

Only act by ideals with smooth norm!

These can be decomposed as the action of many small-normed ideals

Result Practically and asymptotically efficient restricted action

PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies

Joint with Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herledan Le Merdy, Riccardo Invernizzi, Damien Robert, Frederik Vercauteren and Benjamin Wesolowski

https://eprint.iacr.org/2025/401 (To appear at Crypto'25)

First post-quantum commutative unrestricted cryptographic group action that is both asymptotically and practically efficient

Theorem (Page-Robert, 2023)

Theorem (Page-Robert, 2023)

Given

$$[I] = [J]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$

Theorem (Page-Robert, 2023) Given

$$[I] = [J]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$

Let

 $d = uN(I) + vN(J) = \prod p_i^{e_i}$ and k minimal so $E[d] \subseteq E(\mathbb{F}_{p^k})$

Theorem (Page-Robert, 2023)

Given

$$[\mathbf{I}] = [\mathbf{J}]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$
Let

$$d = u \mathsf{N}(\mathbf{I}) + v \mathsf{N}(\mathbf{J}) = \prod p_i^{e_i}$$
 and k minimal so $E[d] \subseteq E(\mathbb{F}_{p^k})$

There exists an algorithm which computes $\varphi_I : E \to E_I$ in time

$$\tilde{\Theta}\left(k\sum e_i p_i^{2g}\right)$$

Theorem (Page-Robert, 2023)

Given

$$[\mathbf{I}] = [\mathbf{J}]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$
Let

 $d = uN(I) + vN(J) = \prod p_i^{e_i}$ and k minimal so $E[d] \subseteq E(\mathbb{F}_{p^k})$

There exists an algorithm which computes $\varphi_I : E \to E_I$ in time

$$\tilde{\Theta}\left(k\sum e_i p_i^{2g}\right)$$

Important Tool for construction isogenies in dimension 2g

Theorem (Page-Robert, 2023)

Given

$$[I] = [J]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$
Let

 $d = uN(I) + vN(J) = \prod p_i^{e_i}$ and k minimal so $E[d] \subseteq E(\mathbb{F}_{p^k})$

There exists an algorithm which computes $\varphi_I : E \to E_I$ in time

$$\tilde{\Theta}\left(k\sum e_i p_i^{2g}\right)$$

Important Tool for construction isogenies in dimension 2g

Goal d as smooth as possible, k as small as possible, g as small as possible

Theorem (Page-Robert, 2023)

Given

$$[\mathbf{I}] = [\mathbf{J}]$$
 equivalent ideals, $u = u_1^2 + u_2^2 + \dots + u_g^2$, $v = v_1^2 + v_2^2 + \dots + v_g^2$
Let

 $d = uN(I) + vN(J) = \prod p_i^{e_i}$ and k minimal so $E[d] \subseteq E(\mathbb{F}_{p^k})$

There exists an algorithm which computes $\varphi_I : E \to E_I$ in time

$$\tilde{\Theta}\left(k\sum e_i p_i^{2g}\right)$$

Important Tool for construction isogenies in dimension 2g

Goal d as smooth as possible, k as small as possible, g as small as possible

In practice Want $d = 2^n, k = 2, g \le 2$

 $d = 2^n$ (Target solution of uN(I) + vN(J) = d)

Guaranteed solutions for $uN(I) + vN(J) = 2^n$ when $2^n \ge N(I)N(J)$ (Coin Problem) ...but Minkowski's bound only gives us [J] = [I] with $N(J) \approx \sqrt{p}$...so $p \le 2^n$

 $d = 2^n$ (Target solution of uN(I) + vN(J) = d)

Guaranteed solutions for $uN(I) + vN(J) = 2^n$ when $2^n \ge N(I)N(J)$ (Coin Problem) ...but Minkowski's bound only gives us [J] = [I] with $N(J) \approx \sqrt{p}$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

 $d = 2^n$ (Target solution of uN(I) + vN(J) = d)

Guaranteed solutions for $uN(I) + vN(J) = 2^n$ when $2^n \ge N(I)N(J)$ (Coin Problem) ...but Minkowski's bound only gives us [J] = [I] with $N(J) \approx \sqrt{p}$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

k = 2 (Extension degree we want for $E[d] \subseteq E(\mathbb{F}_{p^k})$)

E supersingular, so $\#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!) ...if $E[2^n] \subseteq E(\mathbb{F}_{p^2})$, then 2^n must divide p+1 (because $\#E[2^n] = 2^{2n}$) ...in particular $2^n = 2^{\lfloor \log_2(p) \rfloor - \epsilon} < p$

 $d = 2^n$ (Target solution of uN(I) + vN(J) = d)

Guaranteed solutions for $uN(I) + vN(J) = 2^n$ when $2^n \ge N(I)N(J)$ (Coin Problem) ...but Minkowski's bound only gives us [J] = [I] with $N(J) \approx \sqrt{p}$...so $p \le 2^n = 2^{\lceil \log_2(p) \rceil}$

k = 2 (Extension degree we want for $E[d] \subseteq E(\mathbb{F}_{p^k})$)

E supersingular, so $\#E(\mathbb{F}_{p^2}) = (p+1)^2$ (Need supersingularity!) ...if $E[2^n] \subseteq E(\mathbb{F}_{p^2})$, then 2^n must divide p+1 (because $\#E[2^n] = 2^{2n}$) ...in particular $2^n = 2^{\lfloor \log_2(p) \rfloor - \epsilon} < p$

Core Problem

Even the smallest equivalent ideals are too big ...but not by much

Idea

Idea

Factor ideal into smooth-normed and rough-normed part $I = I_s I_r$, $J = J_s J_r$ The smooth parts can be computed like in CSIDH

Idea

Factor ideal into smooth-normed and rough-normed part $I = I_s I_r$, $J = J_s J_r$ The smooth parts can be computed like in CSIDH

Problem The ideals I_r , J_r are no longer equivalent ...but they almost are $[\overline{I_r}J_r] = [I_s\overline{J_s}]$ (not trivial, but easy to evaluate)

Idea

Factor ideal into smooth-normed and rough-normed part $I = I_s I_r$, $J = J_s J_r$ The smooth parts can be computed like in CSIDH

Problem The ideals I_r , J_r are no longer equivalent ...but they almost are $[\overline{I_r}J_r] = [I_s\overline{J_s}]$ (not trivial, but easy to evaluate)

Tweak Page-Robert's algorithm

Search for $u, v \ge 0$ such that $d = uN(I_r) + vN(J_r) = 2^n$...works because $N(I_r), N(J_r)$ is small enough

Idea

Factor ideal into smooth-normed and rough-normed part $I = I_s I_r$, $J = J_s J_r$ The smooth parts can be computed like in CSIDH

Problem The ideals I_r , J_r are no longer equivalent ...but they almost are $[\overline{I_r}J_r] = [I_s\overline{J_s}]$ (not trivial, but easy to evaluate)

Tweak Page-Robert's algorithm

Search for $u, v \ge 0$ such that $d = uN(I_r) + vN(J_r) = 2^n$...works because $N(I_r), N(J_r)$ is small enough

In fact So many solutions u, v that we can find $u = u_1^2 + u_2^2, v = v_1^2 + v_2^2$...algorithm only needs (2g = 4)-dimensional isogeny computation

In fact Using x-only arithmetic, we get away with k = 1

Implementation Results

		Lang.	128	256	375	512	1024
Restricted	CSIDH*	С	40ms				
	SQALE*	С					5.75s**
	dCTIDH*	С				350ms**	
Unrestricted	SCALLOP*	C++	35s	750s			
	SCALLOP-HD*	Sage	88s	1140s			
	PEARL-SCALLOP*	C++	30s	58s	710s		
	KLaPoTi	Sage	207s				
		Rust	1.95s				
	PEGASIS	Sage	1.53s	4.21s	10.5s	21.3s	121s

Table: *Measured on different hardware, **Converted from cycles to time @4GHz.

Thank you for your attention

PEGASIS Paper https://eprint.iacr.org/2025/401 (To appear at Crypto'25)

PEGASIS Implementation https://github.com/pegasis4d

Slides https://rueg.re/mathsofpqc25

Ask me anything (I have bonus slides!)

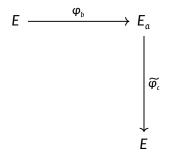
Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

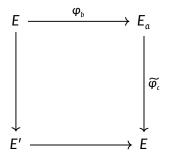
Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$

Assume N(b), N(c) coprime



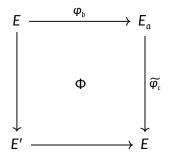
Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Assume N(b), N(c) coprime

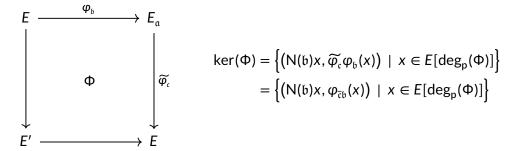


Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Assume N(b), N(c) coprime



Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime



Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Norm equation $\deg_p(\Phi) = N(\mathfrak{b}) + N(\mathfrak{c}) \stackrel{!}{=} 2^f$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]Assume N(b), N(c) coprime

Norm equation $\deg_p(\Phi) = N(b) + N(c) \stackrel{!}{=} 2^f$ Requirements

1. $f \le v_2(p+1) - 3$ **2**. N(b), N(c) coprime

Want to compute $[a] \cdot E = E_a$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

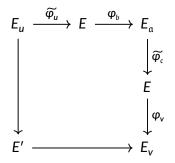
Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_{\mu} : E \to E_{\mu}, \varphi_{\nu} : E \to E_{\nu}$

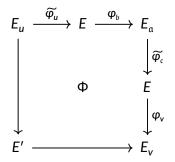
$$E_{u} \xrightarrow{\widetilde{\varphi_{u}}} E \xrightarrow{\varphi_{b}} E_{a}$$

$$\downarrow \widetilde{\varphi_{c}}$$

$$E \\ \downarrow \varphi_{v}$$

$$E_{v}$$





Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E \to E_u, \varphi_v : E \to E_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^{f}$

Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E \to E_u, \varphi_v : E \to E_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_p(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^f$ Requirements

1. $f \le v_2(p+1) - 3$ 2. $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime 3. $u = \deg_p(\varphi_u), v = \deg_p(\varphi_v)$

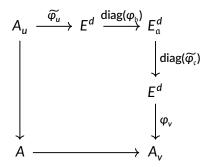
rueg.re/mathsofpqc25

Want to compute $[a] \cdot E = E_a$

Want to compute $[a] \cdot E = E_a$ Let [a] = [b] = [c]

Want to compute $[\mathfrak{a}] \cdot E = E_{\mathfrak{a}}$ Let $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$

$$\begin{array}{ccc} A_u & \stackrel{\widetilde{\varphi_u}}{\longrightarrow} & E^d & \stackrel{\mathrm{diag}(\varphi_{\mathfrak{h}})}{\longrightarrow} & E^d_{\mathfrak{a}} \\ & & & & \downarrow \\ & & & \downarrow \\ & & & E^d \\ & & & \downarrow \\ & & & \\$$



Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_{p}(\Phi) = uN(\mathfrak{b}) + vN(\mathfrak{c}) \stackrel{!}{=} 2^{f}$

Want to compute $[a] \cdot E = E_a$ Let $[a] = [b] = [c], \varphi_u : E^d \to A_u, \varphi_v : E^d \to A_v$ Assume uN(b), vN(c) coprime

Norm equation $\deg_p(\Phi) = uN(b) + vN(c) \stackrel{!}{=} 2^f$ Requirements

1. $f \le v_2(p+1) - 3$ **2.** $uN(\mathfrak{b}), vN(\mathfrak{c})$ coprime **3.** $u = \deg_p(\varphi_u), v = \deg_p(\varphi_v)$

rueg.re/mathsofpqc25

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e || p + 1$ we have

$$E[2^{e}](F_{p}) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e ||p+1$ we have

$$E[2^e](F_p) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let T_{desc} , $T_{horiz,1}$, $T_{horiz,2}$ points of 2-torsion

Let $p \equiv 7 \pmod{8}$ and E/F_p oriented by $\mathbb{Z}\left[\left(\sqrt{-p}+1\right)/2\right]$ Then for $2^e || p + 1$ we have

$$E[2^e](F_p) \cong \mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2^{e-1}\mathbb{Z}$$

Let T_{desc} , $T_{horiz,1}$, $T_{horiz,2}$ points of 2-torsion Lemma Let $E : y^2 = g(x)$ An element x_p in F_p lifts to $P = (x_p, y_p)$ (i) on E with ord(P) = 2^{e-1} iff $x_p - x(T_{desc,1})$ a non-zero non-square (and $g(x_p)$ non-zero square) (ii) on E^t with ord(P) = 2^{e-1} iff $x_p - x(T_{desc,2})$ non-zero square (and $g(x_p)$ a non-zero non-square)