
Leuven Isogeny Days 6, COSIC, 12th of September 2025

A presentation on work in progress

On the Concrete Classical Hardness
of the Supersingular Isogeny Problem

Joint with Lorenz Panny and Alessandro Sferlazza

Ryan Rueger
IBM Research Zurich & Technical University of Munich



Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses

2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model

3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
• cost of memory access is 𝑂(√𝑀) (McEliece and NTRU explicitly mention this)

3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines

4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
• VLSI model with Area-Time cost measure
• Can design ASICs or FPGAs (simple chips)

• Performance can be evaluated through simulation
• Used in analysis of SIKE and lead to suggested lower parameters
[Longa-Wang-Szefer20]

4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware

5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
• Allows one to test assumptions about e.g. memory constraints
• Gives real-world numbers
• In good cases, breaking small instances can be extrapolated to big instances
• It can be used constructively for non-cryptographic sizes!
• Example “Jessica” g6k lattice sieving tools

5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

https://xkcd.com/538

rueg.re/lid25 1/17

https://rueg.re/lid25


Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

This work
• We implemented a GPU accelerated isogeny-graph explorer, that can
navigate to the 𝔽𝑝 subgraph from a random starting curve in a few hours
working over -bit generic primes

• We also have machinery to perform vectorisation over 𝔽𝑝
• …and from this, to recover the full endomorphism ring in practically efficient
time

rueg.re/lid25 1/17

https://rueg.re/lid25


Supersingular isogeny problems

Supersingular Isogeny Path Problem
Given two supersingular elliptic curves 𝐸1, 𝐸2 find an ℓ𝑘-isogeny 𝐸1 −→ 𝐸2

Supersingular Endomorphism Problem
Given a supersingular elliptic curve 𝐸, compute a basis of the endomorphism ring

They are equivalent … but how would one solve them in practice?

rueg.re/lid25 2/17

https://rueg.re/lid25


Supersingular isogeny problems

Supersingular Isogeny Path Problem
Given two supersingular elliptic curves 𝐸1, 𝐸2 find an ℓ𝑘-isogeny 𝐸1 −→ 𝐸2

Supersingular Endomorphism Problem
Given a supersingular elliptic curve 𝐸, compute a basis of the endomorphism ring

They are equivalent … but how would one solve them in practice?

rueg.re/lid25 2/17

https://rueg.re/lid25


Supersingular isogeny problems

Supersingular Isogeny Path Problem
Given two supersingular elliptic curves 𝐸1, 𝐸2 find an ℓ𝑘-isogeny 𝐸1 −→ 𝐸2

Supersingular Endomorphism Problem
Given a supersingular elliptic curve 𝐸, compute a basis of the endomorphism ring

They are equivalent … but how would one solve them in practice?

rueg.re/lid25 2/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores

rueg.re/lid25 3/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores

rueg.re/lid25 3/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores

rueg.re/lid25 3/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores

rueg.re/lid25 3/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores

rueg.re/lid25 3/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured

rueg.re/lid25 4/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured

rueg.re/lid25 4/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured

rueg.re/lid25 4/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured

rueg.re/lid25 4/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured

rueg.re/lid25 4/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism

• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves

• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))
?= 0

• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0

• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)
rueg.re/lid25 5/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸

(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm

• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])

Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)
• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)

• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)

• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently

• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)

rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸
(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)
rueg.re/lid25 6/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

1. Meet in the middle Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑝1/2)

2. vOW Golden Collision Finding Time 𝑂̃(𝑝3/4/𝑀1/2), Memory 𝑂̃(𝑀)

3. (Generalised) Delfs-Galbraith Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑀)

4. Inseparable Endomorphisms Time 𝑂̃(𝑝1/2), Memory 𝑜(1)

Irrespective of post-processing need efficient graph exploration for 3. and 4.

This is really the asymptotic bottleneck

…so how do we do this, for real?

rueg.re/lid25 7/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

1. Meet in the middle Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑝1/2)

2. vOW Golden Collision Finding Time 𝑂̃(𝑝3/4/𝑀1/2), Memory 𝑂̃(𝑀)

3. (Generalised) Delfs-Galbraith Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑀)

4. Inseparable Endomorphisms Time 𝑂̃(𝑝1/2), Memory 𝑜(1)

Irrespective of post-processing need efficient graph exploration for 3. and 4.

This is really the asymptotic bottleneck

…so how do we do this, for real?

rueg.re/lid25 7/17

https://rueg.re/lid25


Attacks against supersingular isogeny problems

1. Meet in the middle Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑝1/2)

2. vOW Golden Collision Finding Time 𝑂̃(𝑝3/4/𝑀1/2), Memory 𝑂̃(𝑀)

3. (Generalised) Delfs-Galbraith Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑀)

4. Inseparable Endomorphisms Time 𝑂̃(𝑝1/2), Memory 𝑜(1)

Irrespective of post-processing need efficient graph exploration for 3. and 4.

This is really the asymptotic bottleneck

…so how do we do this, for real?

rueg.re/lid25 7/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?

• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials

• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?

• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Naively
checking whether ℓ-neighbours of 𝐸 are 𝑑-isogenous to their 𝔽𝑝-conjugate

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Naively
checking whether ℓ-neighbours of 𝐸 are 𝑑-isogenous to their 𝔽𝑝-conjugate
• Find neighbours: compute solutions ofΦℓ(𝑗(𝐸), 𝑧) = 0 (mod 𝑝)
• Is oriented: verify whether any solution 𝑧 satisfiesΦ𝑑 (𝑧, 𝑧𝑝 ) = 0 (mod 𝑝)

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))

rueg.re/lid25 9/17

https://rueg.re/lid25


NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))
rueg.re/lid25 9/17

https://rueg.re/lid25


Generalised NeighbourInFp: NeighbourIsOriented

Indeed this generalises NeighbourInFp

1. ℓ = 1, 𝑑 = 1 Checks whether 𝐸 is in 𝔽𝑝
2. ℓ > 1, 𝑑 = 1 Checks whether 𝐸 has ℓ-neighbours in 𝔽𝑝 (SuperSolver)

3. ℓ = 1, 𝑑 > 1 Checks whether 𝐸 is ℤ[√−𝑑𝑝]-oriented (Generalised Delfs-Galbraith)

4. ℓ > 1, 𝑑 > 1 Checks whether 𝐸 has ℓ-neighbour that is ℤ[√−𝑑𝑝]-oriented

Initial analysis indicates that 4. is likely too expensive (Work in progress!)

Resultant algorithms are more complex to analyse

There is interesting concurrent work that might improve on this

rueg.re/lid25 10/17

https://rueg.re/lid25


Generalised NeighbourInFp: NeighbourIsOriented

Indeed this generalises NeighbourInFp

1. ℓ = 1, 𝑑 = 1 Checks whether 𝐸 is in 𝔽𝑝
2. ℓ > 1, 𝑑 = 1 Checks whether 𝐸 has ℓ-neighbours in 𝔽𝑝 (SuperSolver)

3. ℓ = 1, 𝑑 > 1 Checks whether 𝐸 is ℤ[√−𝑑𝑝]-oriented (Generalised Delfs-Galbraith)

4. ℓ > 1, 𝑑 > 1 Checks whether 𝐸 has ℓ-neighbour that is ℤ[√−𝑑𝑝]-oriented

Initial analysis indicates that 4. is likely too expensive (Work in progress!)

Resultant algorithms are more complex to analyse

There is interesting concurrent work that might improve on this

rueg.re/lid25 10/17

https://rueg.re/lid25


Generalised NeighbourInFp: NeighbourIsOriented

Indeed this generalises NeighbourInFp

1. ℓ = 1, 𝑑 = 1 Checks whether 𝐸 is in 𝔽𝑝
2. ℓ > 1, 𝑑 = 1 Checks whether 𝐸 has ℓ-neighbours in 𝔽𝑝 (SuperSolver)

3. ℓ = 1, 𝑑 > 1 Checks whether 𝐸 is ℤ[√−𝑑𝑝]-oriented (Generalised Delfs-Galbraith)

4. ℓ > 1, 𝑑 > 1 Checks whether 𝐸 has ℓ-neighbour that is ℤ[√−𝑑𝑝]-oriented

Initial analysis indicates that 4. is likely too expensive (Work in progress!)

Resultant algorithms are more complex to analyse

There is interesting concurrent work that might improve on this

rueg.re/lid25 10/17

https://rueg.re/lid25


Minimising costs of checking NeighbourIsOriented

Given a set of tests 𝑇ℓ,𝑐 , we must minimise

min
𝐼

(
cost(√𝑝)/2 + ∑(ℓ,𝑐)∈𝐼 cost(𝑇ℓ,𝑐 )

∑(ℓ,𝑐)∈𝐼 p.success(𝑇ℓ,𝑐 )
)

For a small set of ℓ, 𝑐 = 1, 2, …, the costs and success probabilities can be
explicitly computed (In theory…)

Example Supersolver did this for
𝑐 = 1, ℓ = 3, 5, 7, 9, 11, 13, 17, 19, 15, 23, 25, 29, 21, 31, 27, 37, 41, 43, 33, 35

We are trying to get better estimates for both asymptotic and concrete costs (Work

in progress!)

rueg.re/lid25 11/17

https://rueg.re/lid25


Minimising costs of checking NeighbourIsOriented

Given a set of tests 𝑇ℓ,𝑐 , we must minimise

min
𝐼

(
cost(√𝑝)/2 + ∑(ℓ,𝑐)∈𝐼 cost(𝑇ℓ,𝑐 )

∑(ℓ,𝑐)∈𝐼 p.success(𝑇ℓ,𝑐 )
)

For a small set of ℓ, 𝑐 = 1, 2, …, the costs and success probabilities can be
explicitly computed (In theory…)

Example Supersolver did this for
𝑐 = 1, ℓ = 3, 5, 7, 9, 11, 13, 17, 19, 15, 23, 25, 29, 21, 31, 27, 37, 41, 43, 33, 35

We are trying to get better estimates for both asymptotic and concrete costs (Work

in progress!)

rueg.re/lid25 11/17

https://rueg.re/lid25


Minimising costs of checking NeighbourIsOriented

Given a set of tests 𝑇ℓ,𝑐 , we must minimise

min
𝐼

(
cost(√𝑝)/2 + ∑(ℓ,𝑐)∈𝐼 cost(𝑇ℓ,𝑐 )

∑(ℓ,𝑐)∈𝐼 p.success(𝑇ℓ,𝑐 )
)

For a small set of ℓ, 𝑐 = 1, 2, …, the costs and success probabilities can be
explicitly computed (In theory…)

Example Supersolver did this for
𝑐 = 1, ℓ = 3, 5, 7, 9, 11, 13, 17, 19, 15, 23, 25, 29, 21, 31, 27, 37, 41, 43, 33, 35

We are trying to get better estimates for both asymptotic and concrete costs (Work

in progress!)

rueg.re/lid25 11/17

https://rueg.re/lid25


Minimising costs of checking NeighbourIsOriented

Given a set of tests 𝑇ℓ,𝑐 , we must minimise

min
𝐼

(
cost(√𝑝)/2 + ∑(ℓ,𝑐)∈𝐼 cost(𝑇ℓ,𝑐 )

∑(ℓ,𝑐)∈𝐼 p.success(𝑇ℓ,𝑐 )
)

For a small set of ℓ, 𝑐 = 1, 2, …, the costs and success probabilities can be
explicitly computed (In theory…)

Example Supersolver did this for
𝑐 = 1, ℓ = 3, 5, 7, 9, 11, 13, 17, 19, 15, 23, 25, 29, 21, 31, 27, 37, 41, 43, 33, 35

We are trying to get better estimates for both asymptotic and concrete costs (Work

in progress!)

rueg.re/lid25 11/17

https://rueg.re/lid25


Bad Neighbourhoods and Rerandomisation: Dandelions

rueg.re/lid25 12/17

https://rueg.re/lid25


Why GPUs

What is a GPU?
Example NVIDIA L40s
• 19,000 cuda cores
• 32 bit architecture
• Streaming multi-processors each manage 128 cuda cores
• ∼50 MB Cache, ∼50 GB RAM
• CUDA software allows for writing code for both CPU and GPU simultaneously

What can(’t) you do with a gpu?
• SIMD = Single Instruction Multiple Data (data dependent branching is bad)

• RAM Thrashing/ Cache Limitations
GPUs aren’t just fast
• Specialised hardware: NSA will do similar things
• Similar problems (limited memory, simple logic, not superscalar)
• Close(r) to silicon

rueg.re/lid25 13/17

https://rueg.re/lid25


Why GPUs

What is a GPU?
Example NVIDIA L40s
• 19,000 cuda cores
• 32 bit architecture
• Streaming multi-processors each manage 128 cuda cores
• ∼50 MB Cache, ∼50 GB RAM
• CUDA software allows for writing code for both CPU and GPU simultaneously

What can(’t) you do with a gpu?
• SIMD = Single Instruction Multiple Data (data dependent branching is bad)

• RAM Thrashing/ Cache Limitations
GPUs aren’t just fast
• Specialised hardware: NSA will do similar things
• Similar problems (limited memory, simple logic, not superscalar)
• Close(r) to silicon

rueg.re/lid25 13/17

https://rueg.re/lid25


Why GPUs

What is a GPU?
Example NVIDIA L40s
• 19,000 cuda cores
• 32 bit architecture
• Streaming multi-processors each manage 128 cuda cores
• ∼50 MB Cache, ∼50 GB RAM
• CUDA software allows for writing code for both CPU and GPU simultaneously

What can(’t) you do with a gpu?
• SIMD = Single Instruction Multiple Data (data dependent branching is bad)

• RAM Thrashing/ Cache Limitations

GPUs aren’t just fast
• Specialised hardware: NSA will do similar things
• Similar problems (limited memory, simple logic, not superscalar)
• Close(r) to silicon

rueg.re/lid25 13/17

https://rueg.re/lid25


Why GPUs

What is a GPU?
Example NVIDIA L40s
• 19,000 cuda cores
• 32 bit architecture
• Streaming multi-processors each manage 128 cuda cores
• ∼50 MB Cache, ∼50 GB RAM
• CUDA software allows for writing code for both CPU and GPU simultaneously

What can(’t) you do with a gpu?
• SIMD = Single Instruction Multiple Data (data dependent branching is bad)

• RAM Thrashing/ Cache Limitations
GPUs aren’t just fast
• Specialised hardware: NSA will do similar things
• Similar problems (limited memory, simple logic, not superscalar)
• Close(r) to silicon

rueg.re/lid25 13/17

https://rueg.re/lid25


Some timings
Very Preliminary timings (WIP!)

Larger instances We can break 95bit instances in just a few hours on average

rueg.re/lid25 14/17

https://rueg.re/lid25


Some timings
Very Preliminary timings (WIP!)

Larger instances We can break 95bit instances in just a few hours on average
rueg.re/lid25 14/17

https://rueg.re/lid25


Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]

rueg.re/lid25 15/17

https://rueg.re/lid25


Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]

rueg.re/lid25 15/17

https://rueg.re/lid25


Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]

rueg.re/lid25 15/17

https://rueg.re/lid25


Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]

rueg.re/lid25 15/17

https://rueg.re/lid25


Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]

rueg.re/lid25 15/17

https://rueg.re/lid25


Summary

Practical
We wrote a GPU accelerated implementation of the SuperSolver variant of the
Delfs-Galbraith attack to break instances of the supersingular isogeny problem
for 95 bit generic primes in a few hours
This attack would cost ∼30 USD on AWS and ∼5 USD in the Hetztner cloud

Theoretical
We combined the theory of SuperSolver’s NeighbourInFp detection with
Generalised Delfs-Galbraith to obtain a NeighbourIsOriented detection
subroutine, but we think that this turns out to be an unfavourable generalisation

rueg.re/lid25 16/17

https://rueg.re/lid25


Thank you for your attention

Slides https://rueg.re/lid25

https://rueg.re/lid25


RFC: SQISign Challenges

Many schemes have public challenges that give prize money for breaking their
non-cryptographic parameters (e.g. RSA, SIKE)

Perhaps we want to do this for SQISign? Or give a general isogeny challenge?

An apparent obstruction is the trusted setup required to generate these
challenges and then a zero-knowledge protocol to prove that a solution has been
found
Hopefully we will soon have a better idea of how expensive attacks are in
practice, and can start thinking about setting challenges

rueg.re/lid25 17/17

https://rueg.re/lid25

