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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks
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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
• cost of memory access is 𝑂(√𝑀) (McEliece and NTRU explicitly mention this)

3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks
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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
• VLSI model with Area-Time cost measure
• Can design ASICs or FPGAs (simple chips)

• Performance can be evaluated through simulation
• Used in analysis of SIKE and lead to suggested lower parameters
[Longa-Wang-Szefer20]

4. Full best-effort implementation on powerful hardware
5. Wrench attacks
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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
• Allows one to test assumptions about e.g. memory constraints
• Gives real-world numbers
• In good cases, breaking small instances can be extrapolated to big instances
• It can be used constructively for non-cryptographic sizes!
• Example “Jessica” g6k lattice sieving tools

5. Wrench attacks
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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

https://xkcd.com/538
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Concreteness and measuring the cost of attacks

1. Asymptotic number of bit operations and memory accesses
2. Can be refined to expensive-memory model
3. Hardware implementations of specific subroutines
4. Full best-effort implementation on powerful hardware
5. Wrench attacks

This work
• We implemented a GPU accelerated isogeny-graph explorer, that can
navigate to the 𝔽𝑝 subgraph from a random starting curve in a few hours
working over -bit generic primes

• We also have machinery to perform vectorisation over 𝔽𝑝
• …and from this, to recover the full endomorphism ring in practically efficient
time
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Supersingular isogeny problems

Supersingular Isogeny Path Problem
Given two supersingular elliptic curves 𝐸1, 𝐸2 find an ℓ𝑘-isogeny 𝐸1 −→ 𝐸2

Supersingular Endomorphism Problem
Given a supersingular elliptic curve 𝐸, compute a basis of the endomorphism ring

They are equivalent … but how would one solve them in practice?
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Attacks against supersingular isogeny problems

Meet in the Middle (for isogeny path problem)

Idea
Between two random curves 𝐸1, 𝐸2 there exists an ℓ𝑘 isogeny with 𝑘 = 𝑂(logℓ(𝑝))

Algorithm
Compute walks of length logℓ(𝑝)/2 from 𝐸1, 𝐸2 until they meet

Cost
𝑂̃(𝑝1/2)

Concretely
Requires 𝑂̃(𝑝1/2)memory and search is hard to parallelise

Can be improved with van Oorschot-Wiener Golden Collision Search
…to give cost 𝑂̃(𝑝3/4/𝑀1/2/𝐶) time and 𝑂̃(𝑀)memory using 𝐶 cores
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Attacks against supersingular isogeny problems

Delfs-Galbraith (for isogeny path problem)

Idea
The 𝔽𝑝-subgraph is of size 𝑂̃(𝑝1/2) and once we find it, we can stay inside it

Algorithm
Do random ℓ-isogeny walks 𝐸1 −→ ⋯ −→ 𝐸 ′

1, 𝐸2 −→ ⋯ −→ 𝐸 ′
2 until 𝐸′

1, 𝐸 ′
2 are over 𝔽𝑝

Find isogeny over 𝔽𝑝 between 𝐸′
1 −→ 𝐸′

2 (e.g. with vOW Golden Collision search)

Cost
𝑂̃(𝑝1/2) + 𝑂̃(𝑝3/8/𝑀1/2) time and 𝑂̃(𝑀)memory

Concretely
First stage is naturally memoryless. Memory for second stage can be configured
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Attacks against supersingular isogeny problems

Generalised Delfs-Galbraith (for isogeny path problem)

Idea Replace 𝔽𝑝-subgraph with oriented subgraph EllSS𝑝 (ℤ[√Δ])

However knowing an orientation is tantamount to knowing an endomorphism
• If you can (easily) find endomorphisms of a given curve, you can solve the
isogeny problem already (OneEnd⇔ EndRing⇔ IsogenyPathProblem)

What orientations are easy to detect?
• We know the Frobenius isogeny for free 𝜋 ∶ 𝐸 −→ 𝐸 (𝑝)

• If we have 𝑑-isogeny 𝜓∶ 𝐸 −→ 𝐸 (𝑝), then 𝜋̂𝜓 is an endomorphism
• …of trace zero, and so induces orientation by ℤ[√−𝑑𝑝] on 𝐸 (Converse is also true)

• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
• We can detect whether 𝜓 exists by checkingΦ𝑑 (𝑗(𝐸), 𝑗(𝐸)(𝑝))

?= 0
• …forces small 𝑑 in practice

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)
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• …this has class number 𝑂̃((𝑑𝑝)1/2), so good probability of finding these curves
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?= 0

• …forces small 𝑑 in practice
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Attacks against supersingular isogeny problems

Inseparable Endomorphisms (for endomorphism ring problem)

Idea
Collect lollipops to compute the endomorphism ring of 𝐸

(…Can then obtain isogeny 𝐸1 −→ 𝐸2 from connecting ideal of End(𝐸1), End(𝐸2) using ideal-to-isogeny)

Algorithm
• Walk through ℓ𝑗-isogeny graph with 𝜑∶ 𝐸 −→ … −→ 𝐹 until 𝐹 in EllSS𝑝 (ℤ[√−𝑑𝑝])
Let 𝜓∶ 𝐹 −→ 𝐹 (𝑝) be a 𝑑-isogeny then 𝜑 = 𝜑̂𝜋̂𝜓𝜑 ∈ End(𝐸)

• With different ℓ𝑗 , two of these endomorphisms give a Bass order in End(𝐸)
• (Proven) Subexponential classical post-processing to then compute End(𝐸)
• (Heuristic) 𝑂(1) calls suffice to compute End(𝐸) efficiently
• (Experimental) 4 calls suffice to compute End(𝐸) efficiently

Cost 𝑂̃(𝑝/ℎ(ℤ[√−𝑑𝑝])) = 𝑂̃(𝑝1/2)

Concretely Memoryless, but requires multiple calls to first step (and larger ℓ𝑗)
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Attacks against supersingular isogeny problems

1. Meet in the middle Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑝1/2)

2. vOW Golden Collision Finding Time 𝑂̃(𝑝3/4/𝑀1/2), Memory 𝑂̃(𝑀)

3. (Generalised) Delfs-Galbraith Time 𝑂̃(𝑝1/2), Memory 𝑂̃(𝑀)

4. Inseparable Endomorphisms Time 𝑂̃(𝑝1/2), Memory 𝑜(1)

Irrespective of post-processing need efficient graph exploration for 3. and 4.

This is really the asymptotic bottleneck

…so how do we do this, for real?
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Concrete Questions and Improvements

How to traverse the isogeny graph?

• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials

• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
multiplications will eventually become more efficient as 𝑝 grows

rueg.re/lid25 8/17

https://rueg.re/lid25


Concrete Questions and Improvements

How to traverse the isogeny graph?
• Using modular polynomials
• Using torsion (as is available in SQISign etc)̇ [Chi-Domínguez25]

• Using radical isogenies [Chi-Domínguez25]

Which ℓ?
• Need 𝑂(ℓ3) 𝔽𝑝-multiplications to compute a root of a degree-ℓ polynomial
…so 𝑂(ℓ2) 𝔽𝑝-multiplications per node visited
…so choose ℓ = 2

Better detection i.e. SuperSolver [Corte-Real Santos-Costello-Shi21]
• Core Insight one step costs half a square root
…which costs 𝑂(log(𝑝)) 𝔽𝑝-multiplications

• Therefore any test for orientability that uses constant number of 𝔽𝑝
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Naively
checking whether ℓ-neighbours of 𝐸 are 𝑑-isogenous to their 𝔽𝑝-conjugate
• Find neighbours: compute solutions ofΦℓ(𝑗(𝐸), 𝑧) = 0 (mod 𝑝)
• Is oriented: verify whether any solution 𝑧 satisfiesΦ𝑑 (𝑧, 𝑧𝑝 ) = 0 (mod 𝑝)
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NeighbourIsOriented
NeighbourInFp + Generalised Delfs-Galbraith

Idea Avoid root computations

Φℓ(𝑗(𝐸), 𝑧) = 0, Φ𝑑 (𝑧, 𝑧𝑝 ) = 0

⇝ Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 0, Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = 0
Now write

Φℓ(𝑗(𝐸), 𝑥 + 𝜏𝑦) = 𝑓0(𝑥 , 𝑦) + 𝜏𝑓1(𝑥 , 𝑦) where 𝑓0, 𝑓1 ∈ 𝔽𝑝[𝑥, 𝑦]

Φ𝑑 (𝑥 + 𝜏𝑦, 𝑥 − 𝜏𝑦) = ℎ0(𝑥 , 𝑦) where ℎ0 ∈ 𝔽𝑝[𝑥, 𝑦]

Then compute the resultant

𝑟0(𝑦) = Res𝑥 (𝑓0, ℎ0), 𝑟1(𝑦) = Res𝑥 (𝑓1, ℎ0)

𝑟0(𝑦) = 𝑟1(𝑦) = 0 has 𝔽𝑝-solution ⟺ Φℓ(𝑗(𝐸), 𝑧) = Φ𝑑 (𝑧, 𝑧𝑝 ) = 0 has 𝔽𝑝2-solution

Finally check whether 𝑟0(𝑦) = 𝑟1(𝑦) = 0 has solution by computing gcd(𝑟0(𝑦), 𝑟1(𝑦))
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Generalised NeighbourInFp: NeighbourIsOriented

Indeed this generalises NeighbourInFp

1. ℓ = 1, 𝑑 = 1 Checks whether 𝐸 is in 𝔽𝑝
2. ℓ > 1, 𝑑 = 1 Checks whether 𝐸 has ℓ-neighbours in 𝔽𝑝 (SuperSolver)

3. ℓ = 1, 𝑑 > 1 Checks whether 𝐸 is ℤ[√−𝑑𝑝]-oriented (Generalised Delfs-Galbraith)

4. ℓ > 1, 𝑑 > 1 Checks whether 𝐸 has ℓ-neighbour that is ℤ[√−𝑑𝑝]-oriented

Initial analysis indicates that 4. is likely too expensive (Work in progress!)

Resultant algorithms are more complex to analyse

There is interesting concurrent work that might improve on this
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Minimising costs of checking NeighbourIsOriented

Given a set of tests 𝑇ℓ,𝑐 , we must minimise

min
𝐼

(
cost(√𝑝)/2 + ∑(ℓ,𝑐)∈𝐼 cost(𝑇ℓ,𝑐 )

∑(ℓ,𝑐)∈𝐼 p.success(𝑇ℓ,𝑐 )
)

For a small set of ℓ, 𝑐 = 1, 2, …, the costs and success probabilities can be
explicitly computed (In theory…)

Example Supersolver did this for
𝑐 = 1, ℓ = 3, 5, 7, 9, 11, 13, 17, 19, 15, 23, 25, 29, 21, 31, 27, 37, 41, 43, 33, 35

We are trying to get better estimates for both asymptotic and concrete costs (Work

in progress!)
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Bad Neighbourhoods and Rerandomisation: Dandelions
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Why GPUs

What is a GPU?
Example NVIDIA L40s
• 19,000 cuda cores
• 32 bit architecture
• Streaming multi-processors each manage 128 cuda cores
• ∼50 MB Cache, ∼50 GB RAM
• CUDA software allows for writing code for both CPU and GPU simultaneously

What can(’t) you do with a gpu?
• SIMD = Single Instruction Multiple Data (data dependent branching is bad)

• RAM Thrashing/ Cache Limitations
GPUs aren’t just fast
• Specialised hardware: NSA will do similar things
• Similar problems (limited memory, simple logic, not superscalar)
• Close(r) to silicon
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Some timings
Very Preliminary timings (WIP!)

Larger instances We can break 95bit instances in just a few hours on average
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Many Questions and Todos

Will cache turn out to really be a problem?

Clustering of the 𝔽𝑝 subgraph (Adventures in Supersingularland)

Can we efficiently detect oriented neighbours?

Use of radical isogenies and torsion to walk through the graph [Chi-Domínguez25]
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Summary

Practical
We wrote a GPU accelerated implementation of the SuperSolver variant of the
Delfs-Galbraith attack to break instances of the supersingular isogeny problem
for 95 bit generic primes in a few hours
This attack would cost ∼30 USD on AWS and ∼5 USD in the Hetztner cloud

Theoretical
We combined the theory of SuperSolver’s NeighbourInFp detection with
Generalised Delfs-Galbraith to obtain a NeighbourIsOriented detection
subroutine, but we think that this turns out to be an unfavourable generalisation
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Thank you for your attention

Slides https://rueg.re/lid25
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RFC: SQISign Challenges

Many schemes have public challenges that give prize money for breaking their
non-cryptographic parameters (e.g. RSA, SIKE)

Perhaps we want to do this for SQISign? Or give a general isogeny challenge?

An apparent obstruction is the trusted setup required to generate these
challenges and then a zero-knowledge protocol to prove that a solution has been
found
Hopefully we will soon have a better idea of how expensive attacks are in
practice, and can start thinking about setting challenges
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