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Abstract. We present an active attack against the PEARL-SCALLOP
group action. Modelling Alice as an oracle that outputs the action by a
secret ideal class on suitably chosen oriented elliptic curves, we show how
to recover the secret using a handful of oracle calls (four for the parame-
ter set targeting a security level equivalent to CSIDH-1024), by reducing
to the computation of moderately-sized group action discrete logarithms.
The key ingredient to the attack is to employ curves with non-primitive
orientations inherent to the PEARL-SCALLOP construction. We pro-
vide methods for public-key validation — that is, for deciding whether
a given orientation is primitive — and discuss their practicality.

Keywords: Isogeny-based cryptography, class group actions, active at-
tacks

1 Introduction

Class group actions on elliptic curves were introduced as a building block for
post-quantum cryptography by Couveignes, Rostovtsev, and Stolbunov [35,90].
The resulting key exchange protocol, colloquially known as CRS, was the first
cryptographic scheme to base its security on the hardness of finding isogenies
between elliptic curves over finite fields, marking the origin of the field of isogeny-
based cryptography. CSIDH [25] is an amendment to CRS that employs super-
singular elliptic curves instead of ordinary ones, giving rise to the first practical
variant of the protocol. Based on the more general theory of class group actions
on oriented supersingular elliptic curves, several alternatives have since emerged,
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such as OSIDH [33] (no longer considered viable [39]), (d, ϵ)-structures [31], the
SCALLOP family [43,30,4], and large discriminant instantiations [24,62].

To this date, class group actions on elliptic curves are the only known ap-
proach instantiate commutative post-quantum group actions. Although commu-
tativity of the action exposes a vulnerability to subexponential quantum at-
tacks [66,67,87], it is also the most compelling attribute: commutative group ac-
tions give rise to the closest existing analogue of classical Diffie–Hellman (in fact,
a natural generalization thereof) in a post-quantum scenario.7 One of the major
selling points is that this allows to instantiate a non-interactive key exchange
(NIKE), for which few (post-quantum) alternatives are known [52,88]. Most no-
tably, however, commutative group actions are especially powerful building block
for constructing advanced cryptographic primitives. This includes blind signa-
tures [63,59], threshold schemes [45,37,5], oblivious transfer [68], ID protocols [6],
oblivious pseudorandom functions [15,60,46], verifiable random functions [73],
zero-knowledge proofs [29], public key encryption [80], password authenticated
key exchange [2], updatable encryption [75,72], and quantum money [78].

The precise features desired of the class group action depend on the tar-
geted primitive. For instance, it is often desirable for the underlying class group
to be known. Indeed, this is one approach for instantiating an effective group
action, which is crucial for e.g. signature schemes [13,12,11] (although more
recently, other methods for obtaining effective class group actions have been de-
veloped [84,85,41]). Moreover, some threshold schemes [45, Sec. 3] crucially rely
on a known class group structure as a necessary ingredient for the protocol. The
SCALLOP family [43,30,4], of which PEARL-SCALLOP [4] is the most efficient
candidate, specifically targets parameter sets where the class group structure is
efficiently computable.

To the best of our knowledge — apart from some particularly dubious pa-
rameter choices [53] — no attacks specific to the SCALLOP constructions have
appeared in the literature. Cryptanalysis of class group actions is largely cen-
tered around CSIDH, and involves cost analysis of quantum attacks [10,16,86,28],
side-channel analysis [20] — with a particular focus on constant time implemen-
tations [77,76,27,32,7,17,18,61], fault injections [19,69,71,8,70], and pairing-based
attacks [26,23,22,53].

An avenue that remains largely unstudied in the general context of class
group actions is that of active attacks, by which we mean an attacker model
in which adversaries may deviate from an honest execution of the protocol in
an attempt to extract secret information.8 Such attacks — sometimes referred
to as adaptive attacks — have been considered in isogeny-based cryptography
mainly in the setting of SIDH-like protocols [57,47,48,9,65,51,50,56], although
other isogeny-based schemes (not based on class group actions) have also been
considered [79,95,81,74].

7 Classical Diffie–Hellman can be viewed as relying on a commutative group action
(Z/qZ)×

⟳

G, where G is a cyclic group of order q.
8 We do not consider fault injections and side channel analysis as part of the attacker

model.
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Our Contributions.

- We present an active attack against instances of the isogeny class group action
in which the conductor of the orientation is a product of medium-sized primes;
this is precisely the setting of PEARL-SCALLOP.
The efficacy of our attack crucially relies on access to a static CDH oracle
(sometimes also called the strong oracle [57,65] in the context of active attacks).
More concretely, we model Alice as an oracle that, on input of an oriented
elliptic curve (E, ι), returns (E′, ι′) = [a] ∗ (E, ι), where [a] is her secret ideal
class.
Contrary to other active attacks in the isogeny-based literature, this attack is
not “adaptive”; indeed, all inputs to the oracle calls are precomputed, and in
particular independent of the secret [a]. Moreover, the attack does not rely on
side-channel information.

- We show that our attack significantly affects the security of PEARL-SCALLOP
for all proposed parameter sets. For example, for the CSIDH-1024 equivalent,
we can recover the secret using four oracle calls together with four group action
inversions for groups of size ∼ 128 bits.

- We describe public-key validation algorithms to mitigate the attack, and dis-
cuss their efficiency. We show that they significantly impact the practicality of
PEARL-SCALLOP.

Technical overview. We now present the main idea of our attack. Let OK be
the maximal order of an imaginary quadratic number field K, and suppose that
O ⊆ OK is a suborder of conductor f1 · · · fr, where f1, . . . , fr are primes, each
roughly of size 2128. This gives rise to a sequence of suborders OK = O(0) ⊋
. . . ⊋ O(r) = O, where, say, O(i) has conductor f1 · · · fi.

We think of curves primitively oriented by one of these orders as sitting inside
of an isogeny volcano9 [92], where the curves at the top are (primitively) oriented
by OK and the curves at the bottom are primitively oriented by O. 10 Adjacent
levels of the volcano are connected by oriented isogenies of large prime degree;
the ascending isogeny from a curve oriented by O(i) to one oriented by O(i−1)

is of degree fi.
In (a simplified version of) PEARL-SCALLOP, one acts by the class group

Cl(O) on curves that are primitively oriented by O, i.e. curves at the bottom of
the volcano.11 For this to be a cryptographically useful group action, PEARL-
SCALLOP sets parameters so that (a) the class group Cl(O) is sufficiently large,
so solving vectorization (i.e. finding an ideal class connecting two given curves
at the bottom of the volcano) is hard; and (b) computing ascending isogenies is
infeasible, because their degree is a large prime.
9 One difference with the usual isogeny volcano, whose edges correspond to ℓ-isogenies

for a fixed prime ℓ, is that our descending/ascending isogenies have various different
degrees.

10 We recall that curves sitting “at level i” in the volcano, namely curves that are
primitively oriented by O(i), are also (non-primitively) oriented by O(i+1), . . . ,O(r).

11 In reality, the conductor of O also has some small smooth divisor.
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Now suppose that we are trying to recover a secret ideal class [a] ∈ Cl(O),
given access to an oracle that, on input of an O-oriented elliptic curve (E, ι),
returns (E′, ι′) = [a] ∗ (E, ι). The crucial subtlety to exploit here is that the O-
orientation is not assumed to be primitive. Indeed, as it will turn out, the group
action underlying the PEARL-SCALLOP protocol is well defined on any O-
oriented curve. On input of a primitively O′-oriented curve (E, ι), where O′ ⊇ O,
one naturally obtains [aO′] ∗ (E, ι), where [aO′] ∈ Cl(O′). Now, by calling the
oracle on curves that are higher up in the volcano — i.e. where the vectorization
problem is easier — and subsequently finding a connecting ideal class, we obtain
non-trivial information about the secret ideal class.

A more precise description of the attack is as follows. We first call the ora-
cle on a curve (E0, ι0) that is at the top of the isogeny volcano: it will return
(Ea

0 , ι
a
0) = [aOK ] ∗ (E, ι). Then, given that Cl(OK) is not too large (say of size

∼ 2128), we can compute an OK-ideal a0 such that [a0OK ] = [aOK ] by solving
the vectorization problem (i.e. finding a connecting ideal class) between (E0, ι0)
and (Ea

0 , ι
a
0), using either a classical or a quantum algorithm.

Next, we call the oracle on a curve (E1, ι1) that is one level down in the
volcano, i.e. primitively oriented by the order O(1) of conductor f1, obtaining
(Ea

1 , ι
a
1) = [aO(1)] ∗ (E1, ι1). Applying [a0 ∩ O(1)] to (E1, ι1), we obtain a curve

(E′
1, ι

′
1). Crucially, since [a0OK ] = [aOK ], we now have that the ascending f1-

isogenies from (E′
1, ι

′
1) and (Ea

1 , ι
a
1) map to a common curve at the top of the

volcano. This implies that the connecting ideal class [ci] between the two curves
lies in the kernel κ1 of the projection Cl(O(1)) −→ Cl(OK), which is roughly of
size #κ1 ≈ f1. Given that f1 is not too large, we can again solve the vectorization
problem, this time inside the group κ1. From this, we can obtain an O(1)-ideal a1
such that [a1O(1)] = [aO(1)]. Continuing this process down the isogeny volcano,
we eventually obtain an O(r)-ideal (i.e. an O-ideal) ar such that [ar] = [a].

Ei−1 Ea
i−1

ai−1

ai−1

Ei

ai

ciE′
i

Ea
i

κi-orbit

Fig. 1: A simplified sketch of the attack. We have omitted the orientations for
visual clarity, and used representatives a instead of classes [a]. We translate the
information ai−1 down one level by acting on Ei. Then we solve a vectorisation
problem within the κi-orbit, to obtain the “correction” ci which delivers ai. Note
that we never evaluate the descending isogenies.
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Outline. In Section 2, we compile preliminary results; in particular, we show
that the PEARL-SCALLOP class group action is well defined in case of a non-
primitively oriented curve, and that known algorithms already compute this
action without modification. In Section 3, we describe our attack in the context
of various active attacker models, and discuss the security implications. Finally,
in Section 4, we describe methods to validate public keys and discuss their prac-
ticality.
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2 Preliminaries

2.1 The class group action on oriented elliptic curves

Throughout this subsection, all elliptic curves are assumed to be defined over a
perfect field k of characteristic p > 0. By End(E) we mean the endomorphism
ring over k and by End0(E) := End(E) ⊗ Q the (full) endomorphism algebra.
Our main references are [93,83]. For cryptographic applications of the isogeny
class group action, we refer to [3].

Imaginary quadratic orders. An imaginary quadratic order O is an order
in an imaginary quadratic number field K. It can always be written as O =
Z[σ] = {a + bσ | a, b ∈ Z} for some algebraic integer σ ∈ K. The discriminant
Disc(O) ∈ Z<0 of O is the discriminant of σ; it defines O uniquely up to ring
isomorphism. An imaginary fundamental discriminant d is a negative integer
that is either (i) squarefree and d ≡ 1 (mod 4), or (ii) of the form d = 4 · d′,
where d′ is squarefree and d′ ≡ 2, 3 (mod 4). An imaginary quadratic order is
maximal with respect to inclusion, i.e. equal to the ring of integers of its fraction
field, if and only if its discriminant is fundamental. The class group Cl(O) of O
is the group of invertible fractional O-ideals modulo its subgroup of principal
fractional O-ideals.

Inclusions of orders. If O1 ⊇ O2, then Disc(O1) = f2 Disc(O2) for some
integer f ∈ Z>0, called the relative conductor of O2 in O1. The ideal fO1 is
the largest ideal (with respect to inclusion) of O1 that is contained in O2 [34,
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Thm. 1.3] and is called the conductor ideal. If O1 = Z[σ] then O2 = Z[fσ]. If
O1 ⊇ O2 ⊇ O3, then the relative conductor of O3 in O1 is the product of the
relative conductors of O2 in O1 and of O3 in O2. There is an exact sequence
relating the class groups of O1 ⊇ O2 [64, Theorem 5.4]:

1 −→ O×
1

O×
2

−→ (O1/fO1)
×

(O2/fO1)×
−→ Cl(O2) −→ Cl(O1) −→ 1. (1)

Orientations. With K still being an imaginary quadratic number field, we
define a K-orientation on an elliptic curve E to be (necessarily injective) ring
homomorphism ι : K −→ End0(E). If O ⊆ K is an imaginary quadratic order,
then ι is called an O-orientation if ι(O) ⊆ End(E). If an O-orientation does not
extend to a strictly larger imaginary quadratic order O′ ⊆ K, then it is called
primitive.

Definition 2.1. A K-orientation ι : K −→ End0(E) is primitive for a unique
order Opr(ι) ⊆ K, called the primitive order (of ι). It is given by Opr(ι) =
ι−1(End(E)). The absolute conductor of ι, denoted fpr(ι), is the conductor of
Opr(ι) in the ring of integers OK .

If (E, ι) is a K-oriented elliptic curve and φ : E −→ E′ is an isogeny, then the
induced K-orientation φ∗(ι) on E′ is given by

φ∗(ι)(α) :=
1

degφ
φ ◦ ι(α) ◦ φ̂

for all α ∈ K. Let O := Opr(ι),O′ := Opr(φ∗(ι)) denote the primitive orders of
ι and φ∗(ι) respectively. If degφ = ℓ is prime, then either

(i) O = O′ and we call φ horizontal ; or
(ii) O ⊊ O′ and we call φ ascending ; or
(iii) O ⊋ O′ and we call φ descending.

In the last two cases, the relative conductor is ℓ. We will use the same terminolo-
gies (horizontal, ascending, descending) for isogenies whose degree is not prime,
if the primitive orders of the domain and codomain are comparable, in the sense
that one is contained in the other.

Class group actions. Let (E, ι) be an O-oriented elliptic curve, and denote
by Opr the associated primitive order. Write fOpr/O for the relative conductor
of O in Opr. To an ideal a ⊆ O of norm coprime to p, fOpr/O, we associate a
separable isogeny φa : E −→ a ∗ E of degree N(a) with kernel

E[a] :=
⋂
α∈a

E[ι(α)].

The isogeny φa is horizontal if and only if a is invertible. In that case, the oriented
curve (a ∗E, (φa)∗(ι)) depends — up to K-oriented isomorphism — only on the
ideal class of a. This induces a well-defined group action

Cl(O)

⟳ {(E, ι) | E/k an elliptic curve, ι an O-orientation}/ ∼= . (2)
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If fOpr/O = 1 (i.e. if the orientation is primitive) then this action is free, and
the number of orbits is at most two [94, Thm. 1].

Acting by exponent vectors. Let K be an imaginary quadratic number field
and let ℓ1, . . . , ℓn be a collection of (distinct) primes that split in OK . Suppose
σ generates OK = Z[σ]. Since each prime ℓj split, the reduction modulo ℓj of
the minimal polynomial of σ has two distinct eigenvalues λj , µj ∈ Z/ℓjZ. This
corresponds to a factorization of the principal ideal generated by ℓj into prime
ideals of norm ℓj , as

(ℓj) = (ℓj , σ − λj)(ℓj , σ − µj).

Let us choose, for each 1 ≤ j ≤ n, one of the two eigenvalues. That is, we fix a
choice of prime ideal lj ⊆ OK above ℓj , say lj = (ℓj , σ − λj). Then we obtain a
well-defined group homomorphism

ϖ : Zn −→ Cl(OK), (s1, . . . , sn) 7→ [l1]
s1 · · · [ln]sn .

In the context of class group actions, once a map ϖ has been defined, elements
(s1, . . . , sn) ∈ Zn are also referred to as exponent vectors. Our choice of lj essen-
tially amounts to determining which ideal of norm ℓj is considered positive (i.e.
corresponding to sj = 1). Using ϖ, we can extend (2) to an action

Zn ⟳ {(E, ι) | E/k an elliptic curve, ι an OK-orientation}/ ∼= .

Since the action (2) on primitively oriented elliptic curves is free, the stabilizer
of every point is the kernel of ϖ. If O ⊆ OK is an order of absolute conductor
coprime to ℓj , then ℓj splits in O, and lj ∩O is an invertible O-ideal of norm ℓj .
Choosing lj ∩O as the “positive” ideal, we can further extend to a group action

Zn ⟳ {
(E, ι)

∣∣∣ E/k, ι a K-orientation, gcd
(∏

j ℓj , f
pr(ι)

)
= 1

}
/ ∼=, (3)

where, explicitly,

(s1, · · · , sn) ∗ (E, ι) :=
(
[l1 ∩ Opr(ι)]

s1 . . . [ln ∩ Opr(ι)]
sn

)
∗ (E, ι).

Here, the stabilizer of (E, ι) is the kernel Λ of the map ϖpr : Zn −→ Cl(Opr(ι)).
If ϖpr is surjective, then we have Cl(Opr(ι)) ∼= Zn/Λ, and we call Λ the relation
lattice of Opr(ι).

Compatibility of the action between levels. Let O′ ⊆ O ⊆ OK be orders
of absolute conductor f ′, f respectively. We recall that the O-ideals prime to f
are in bijection with the OK-ideals prime to f via the norm-preserving maps of
extension (I 7→ IOK) and restriction (J 7→ J ∩O) [36, Prop. 7.20]; and because
an ideal I ⊆ O is prime to an integer m if and only if its norm N(I) is [36,
Lem. 7.18]12, this bijection restricts to a bijection between O-ideals prime to f ′

12 Cox proves this for m = f , but the statement still holds for any integer m.
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and OK-ideals prime to f ′. Together, we conclude that restriction and extension
deliver a bijection between O-ideals prime to f ′ and O′-ideals prime to f ′.

Consider now a prime OK-ideal l = (ℓ, σ − λ) above ℓ. Then

l ∩ O = ℓO + f(σ − λ)O = (ℓ, f(σ − λ)),

and similarly for l ∩ O′.

Lemma 2.2. If f, f ′ ∈ Z>0 are coprime to ℓ, then (ℓ, f(σ−λ)) = (ℓ, f ′(σ−λ))
as O-ideals.

Proof. This is exactly the statement that the extension of l ∩ O′ to O is l ∩ O,
which follows from the fact that extension and restriction of ideals coprime to
the conductor is bijective. ⊓⊔

Corollary 2.3. Let (E, ι) be a K-oriented elliptic curve. Let Z[σ] = Opr(ι) and
f = fpr(ι). Let ω ∈ K be any element such that ι(ω) ∈ End(E). Denote by f ′ the
relative conductor of Z[ω] in Z[σ], and assume that gcd(ℓ, f ′) = 1 for a prime ℓ.
Write ω = c + f ′σ for some c ∈ Z. Then, if l = (ℓ, σ − λ) is a prime OK-ideal
above ℓ,

E[(ℓ, ω − c− f ′λ)] = E[l ∩ Opr(ι)].

Proof. We have

E[(ℓ, ω − c− f ′λ)] = E[(ℓ, f ′σ − f ′λ)] = E[(ℓ, fσ − fλ)] = E[l ∩ Opr(ι)],

where the second equality follows from Lemma 2.2. ⊓⊔

This result is essentially [4, Prop. 3.1]; it implies that we can evaluate the group
action (3) using the image under ι of any element ω ∈ Opr(ι) (not necessarily a
generator for the primitive order), as long as the absolute conductor of Z[ω] is
coprime to all primes ℓ1, . . . , ℓn.

2.2 PEARL-SCALLOP

PEARL-SCALLOP is a group action based on oriented isogenies of supersingular
elliptic curves, which was proposed in [4] as a variant of SCALLOP [43]. The
orienting imaginary quadratic order is a suborder of a maximal order with a
class number that is large but efficiently computable, and the conductor is taken
to be a product of a few large primes, rather than a single large prime.

PEARL-SCALLOP features a representation of the orientation by an endo-
morphism whose degree is a power of 2. This avoids higher-dimensional isogeny
representations, in contrast to SCALLOP-HD [30], and simplifies a constraint
on the norm of the acting ideal. We give here a brief summary of PEARL-
SCALLOP.
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The orientation. Let f, d ∈ Z>0, O = Z[f
√
−d] be an order inside the imag-

inary quadratic number field K, ω an element of smooth norm inside O, and
g the relative conductor of Z[ω] in Z[f

√
−d]. Given a (maximal supersingular)

O-oriented elliptic curve (E, ι) along with an efficient representation of the en-
domorphism ι(ω), one can efficiently compute the action of any prime-normed
O-ideal I so long its norm is prime to g and polynomially sized in the input.
This is shown in [4, Prop. 3.1], and also follows from Corollary 2.3.

For completeness, we give a self-contained description here. If δ is a generator
of Z[f

√
−d], then gδ is a generator of Z[ω], hence gδ = c + ω for some c ∈ Z.

Let l = (ℓ, a + δ) be an ideal of Z[δ] with prime norm ℓ, coprime to g. Then
l = (ℓ, g(a + δ)) = (ℓ, ga + c + ω), and computing the isogeny corresponding to
the action of [l] amounts to computing the isogeny with kernel E[ℓ] ∩ E[ι(ω) +

[ga+ c]] = (ι̂(ω) + [c+ ga])(E[ℓ]). In other words, to compute the action of l on
E one essentially needs to compute eigenvectors of ι̂(ω) on E[ℓ].

The endomorphism ι(ω) is represented by a pair cyclic isogenies φP , φQ which
compose to ι(ω) = φ̂QφP , and these isogenies are in turn represented by gener-
ators P,Q of their kernels. From now on, we will drop the orientation ι in the
notation, and write for example ω for ι(ω).

In practice, deg(ω) = 22e | (p+ 1)
2 for some e ∈ Z>0, and {P,Q} is a basis

of E[2e]. The prime p is taken to be of the form p = c2e
∏n

i=1 ℓi − 1, where
ℓ1, . . . ℓn are split odd primes not dividing the relative conductor g, and c is
a small cofactor such that p satisfies (Disc(O) | p) = −1. This last condition
ensures that the set of O-oriented supersingular elliptic curves in characteristic
p is nonempty [83, Prop. 3.2]).

Evaluating the action. When evaluating the action of an ideal of O, one
first finds a smooth normed representative a =

∏n
i=1 l

ei
i of its class in Cl(O)

using the pre-computed class group structure (see [4, Sec. 4] for more details);
then one repeatedly applies Algorithm 1 ([4, Algorithm 2]) to ideals of the form∏n

i=1 l
bi
i with bi ∈ {0, 1} until the action by a has been computed. The evaluation

procedure is standard, and has a standard optimization obtained by using a
different point sampling method (see [4, Algorithm 3]), but the core idea remains
the same.

Generating a starting curve. A starting elliptic curve, together with a rep-
resentation of an O-orientation, is computed in the following way. First, one
considers a definite quaternion algebra Bp,∞, ramified at p and infinity, and a
special p-extremal maximal quaternion order O0 ⊆ Bp,∞ where the quaternion
embedding problem is easily solvable. Then, one tries different smooth values h
until a (primitive) embedding of Z + hO in O0 is found (this is done using the
heuristic algorithm GenericOrderEmbeddingFactorisation, see [49, Algorithm 3]).

From a curve E0 such that End(E0) ∼= O0, it is then easy to compute an
ascending h-isogeny to a curve E, which will be oriented by O. Finally, one
needs to find points P,Q representing the smooth element ω ∈ O. This is done by
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Algorithm 1 GroupAction(a, E, P,Q)
Input: A smooth O-ideal a =

∏N
i=1 li, an O-oriented elliptic curve E, points P,Q ∈ E

generating isogenies such that φ̂Q◦φP is an endomorphism corresponding to an element
of O of norm 22e.
Output: An O-oriented curve (Ea, Pa, Qa) = a ∗ (E,P,Q).
1: Let B1, B2 be a basis of E[L] where L =

∏N
i=1 ℓi.

2: Let ω̂ = φ̂P ◦ φQ.
3: Compute B′

1 = ω̂(B1), B′
2 = ω̂(B2).

4: for i ∈ {1, . . . n} do
5: Compute Ki = [L/ℓi]([λi]B1 +B′

1) where li = (ℓi, λi + ω).
6: if Ki = 0E then
7: Compute Ki = [L/ℓi]([λi]B2 +B′

2).
8: end if
9: end for

10: Compute φa : E −→ Ea from its kernel K = ⟨K1, . . .Kn⟩.
11: return (Ea, φa(P ), φa(Q)).

factoring the ideal generated by ω in OE
∼= End(E) as a product of smooth-norm

ideals, pulling back these ideals through the ideal corresponding to the ascending
h-isogeny, and eventually obtaining the corresponding kernel generators. This is
a standard technique used also in SQIsign [44], from which PEARL-SCALLOP
takes algorithms IdealToIsogeny and IdealToKernel. The procedure is summarised
in [4, Algorithm 1], which we do not report here as it will not be needed for the
rest of the paper.

Parameters. The two key properties of PEARL-SCALLOP are that its orien-
tation is by an order O = Z[d

√
−d] with f a product of a few medium-sized

primes, and that this orientation can be encoded by an element of smooth norm.
These properties respectively make the class group computation feasible, whilst
allowing for efficient evaluation.

To find such f and ω, the idea is to consider powers m of a generic element
a+

√
−d ∈ Z[

√
−d] satisfying the norm equation a+ d2 = 2N2 with N smooth,

until the coefficient of
√
−d in (a+

√
−d)m is divided by a few large primes.

For parameters targeting a security level equivalent to CSIDH-1024, the au-
thors set N = 2129, and consider (a +

√
−d)4 so that the coefficient of

√
−d

equals 24a(a − N)(N + a)/3. They pick a and d = 2N2 − a2 so that a, N − a
and (N +a)/3 are 128-bit primes that split in Q(

√
−d), in order to ensure easier

discrete logarithms in the class group computation. Thanks to [4, Lemma 3.3],
the splitting condition is achieved when the above three factors are prime, and
a < N satisfies a ≡ 19 mod 24.

A similar approach is taken for parameters equivalent to CSIDH-{2048, 4096},
obtaining a conductor divided by seven primes of size 299 bits and 640 bits, re-
spectively. Finally, the authors propose an intermediate set of parameters achiev-
ing a discriminant of Q(f

√
−d) of size roughly 1500 bits. We refer to the original

paper [4, Section 3] for more details.
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2.3 Interpolating and Dividing Isogenies

In this subsection we briefly cover isogeny representations by embedding into
higher dimensional isogenies and an algorithm to test whether a given isogeny
factors through multiplication by an integer, with [89] as our main reference.
This content will be relevant for Section 4, where we will discuss how to validate
PEARL-SCALLOP public keys, in particular how to verify whether a given
orientation is primitive.

Embedding isogenies. Robert’s embedding lemma [89, Ex. 5.16] tells us that
every n-isogeny φ : (A, λA) −→ (B, λB) between g-dimensional principally po-
larised Abelian varieties can be embedded into a 2ug-dimensional N -isogeny

Φ = (α, (φ̃ idu);−(φ idu), α̃) : A
u ×Bu −→ Au ×Bu,

for any N > n, when N − n is the sum of u ∈ {1, 2, 4} integer squares. Here,
φ̃ = λ−1

A φ̂λB denotes the polarised dual13 of φ; (φ idu) : A
u −→ Bu denotes the

u×umatrix with φ on the diagonal; and α is a u×u integer matrix which induces
a polarised endomorphism on both Au, Bu and has determinant N−n [89, Prop.
5.15]14. Moreover, if N is prime to n and to the characteristic of the base field,
we have

ker(Φ) = {((N − n)P, (idu φ) ◦ α(P )) | P ∈ Au[N ]} . (4)

Interpolating isogenies. Given interpolation data {(Pi, φ(Pi), Qi, φ(Qi))}i of
an n-isogeny φ on a CRT basis {(Pi, Qi)}i15 of A[N ] and a decomposition of
N −n as the sum of u squares16, one can one can write down the corresponding
matrix α and generators of ker(Φ) as described by (4).

With ker(Φ) computed this way, one can evaluate Φ (and therefore φ) on
points R in A×B in time Õ(aed(mℓ)g log(q)), where Fq is the field of definition
of A,B; N = ℓe11 · · · ℓeaa ; e = maxi(ei); ℓ = maxi(ℓi); d is such that all R +
Pi, R + Qi live in A(Fqd); and m is the level of theta coordinates describing
A,B [89, Lem. 5.7]. With the N -torsion accessible17 this justifies calling such
interpolation data an HD-representation of φ, because it gives rise to an efficient
representation of φ.

We remark that it is possible to efficiently evaluate Φ (and therefore φ)
if φ is only known on A[N1] ∪ A[N2] ⊆ A[N ] where N = N1N2 by splitting
the HD-representation [89, Sec. B.2]. Informally, this is because it is possible
to decompose Φ = Φ2Φ1 into Ni-isogenies which satisfy ker(Φ1) ⊆ A[N1] and

13 Robert calls this the contragredient in [89].
14 For example, when N−n = x2+y2, then α = (x, y;−y, x) is a polarisation-respecting

endomorphism on A2, B2.
15 i.e. {Pi, Qi} is a basis of A[ℓeii ] where N = ℓe11 · · · ℓeaa and ℓ1, . . . , ℓa are coprime
16 which requires factoring N − n in general
17 i.e. is defined over an extension of degree polynomial in log(p) [89, Def. A.1]
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ker(Φ̃2) ⊆ B[N2]. We remark this does not require N1 coprime to N2 and is in
particular true for N1 = N2.

More precisely, ker(Φ1) = ker(Φ) ∩ (Au × Bu)[N1] [42, Prop. 13], and so we
have ker(Φ1) = {((N − n)P, (idu φ) ◦ α(P )) | P ∈ (Au×Bu)[N1]}.18 Likewise for
the polarised dual, ker(Φ̃2) = {((N − n)P, (idu φ) ◦ α(P )) | P ∈ (Au×Bu)[N2]},
where the values φ̃(P ) are recovered from knowing φ(P ) by computing discrete
logarithms in µN . Indeed, by properties of the Weil pairing, eB,N (φ(P ), Q) =
eA,N (P, φ̃(Q)).

Testing for division. To test whether a given n-isogeny φ factors through
scalar multiplication by m, one can produce apparent interpolation data for
ψ = φ/m by computing {(Pi, φ(Pi)/m,Qi, φ(Qi)/m}ji on some CRT bases of
the dj-torsion, with N = d1d2 > n/m2 prime to m.

From this interpolation data, one obtains a maximally isotropic subgroup of
Eu

1 ×Eu
2 by selecting a powersmooth polarised degree N , finding a u×u matrix α

which induces a polarised endomorphism on Eu
1 ×Eu

2 with determinantN−n/m2

and writing down the subgroup as in (4). This subgroup is the kernel of some
N -isogeny Φ : Eu

1 × Eu
2 −→ A and because N is powersmooth, it is possible to

compute the codomain A of Φ in polynomial time.
If A ≁= Eu

1 × Eu
2 , then Φ does not encode one-dimensional isogenies, hence

φ certainly does not factor through multiplication by m; if A ∼= Eu
1 × Eu

2 , then
Φ is a u × u matrix of nij-isogenies Φij which need to further investigation.
Using pairing computations on the images of Φij , the degree nij of Φij can be
recovered, and the isogeny Φi′j′ of degree ni′j′ = n/m2 can be identified [89,
Lem. 6.2]. Evaluating on a point P of order N ≥ 4n/m2 + 1, and testing for
equality φ(P )/m = Φi′j′(P ), one can conclude whether m divides φ or not.

3 An Active attack

We now present a powerful active attack against the PEARL-SCALLOP group
action, which uses a static action-CDH oracle to model the party being at-
tacked. We also demonstrate two less effective attacks using the weaker hashed
static action-CDH and static action-DDH oracles. Whilst the attacks do not
impact the conjectured security of the currently proposed parameter sets, the
corresponding oracles have much stronger cryptographic motivation (c.f. Sub-
section 3.3), and so we discuss their use for completeness.

3.1 Notation

Let K be an imaginary quadratic number field and let OK = Z[σ] be its ring of
integers. Let f ∈ Z>0 be a square-free integer and write f =

∏r
i=1 fi for its prime

factorization. Denote by O the order of conductor f in OK . For 0 ≤ i ≤ r, we
will also write O(i) for the order of conductor f1 · · · fi in OK , so that O(0) = OK

18 under the continued assumption that N is prime to n.
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and O(r) = O. Let n ∈ Z>0 and let ℓ1, . . . , ℓn denote prime numbers that split
in O (in particular, they are all coprime to the conductor f). For every ℓj , fix
one of the two prime ideals lj ⊆ O that lies above it, and write l

(i)
j = ljO(i) for

its extension to O(i). Define

ϖ(i) : Zn −→ Cl(O(i)), (s1, . . . , sn) 7→
[
l
(i)
1

]s1
· · ·

[
l(i)n

]sn
.

Assume that every ϖ(i) is surjective. The i-th relation lattice Λ(i) is defined to
be the kernel of ϖ(i). We also write Λ(−1) = Zn. Note that the relationship
between the orders and the relation lattices is strictly inclusion preserving That
is, O(i) ⊊ O(j) implies Λ(i) ⊊ Λ(j).

We say that an O-oriented curve (E, ι) is at level i if Opr(ι) = O(i). In
particular, if (E, ι) is at level i, then its stabilizer for the action in (3) is Λ(i).
Moreover, we say that two curves (E, ι), (E′, ι′) at level i are siblings if they lie
below the same curve on level i − 1, i.e. there exists a vector vi in Λ(i−1) such
that vi ∗ (E, ι) = (E′, ι′).

3.2 The attacks

We describe our attacks using the language of exponent vectors. That is, we con-
sider the class group action as given by (3). This agrees with the usual method
for evaluating the group action in practice (cf. Algorithm 1). Assume that all
lattices of relations Λ(i) have been computed. Moreover, assume that a pre-
computed list of O-oriented curves (E0, ι0), . . . , (Er, ιr) with (Ei, ιi) at level i
is known. Note that we do not assume knowledge of isogenies between differ-
ent (Ei, ιi) levels. Write κi = Λ(i−1)/Λ(i) for the kernel of the surjective map
Cl(O(i)) −→ Cl(O(i−1)). Recall that #κ0 = #Cl(O(0)) = h(DK) ≈

√
−DK [91]

and #κi = fi − (DK | fi) = fi ± 1 [36, Th. 7.24], where DK = Disc(OK).
Suppose now that Alice has secret key a in Zn. We describe three active

attacks to recover a by modelling the interaction with Alice through one of the
following three oracles. We discuss the cryptographic motivation of these oracles
later.

(i) Static action-CDH oracle Aa. On input an O-oriented curve (E, ι), the
oracle returns a ∗ (E, ι).

(ii) Hashed static action-CDH oracle Aa
H. On input an O-oriented curve (E, ι),

the oracle returns the hash H(a ∗ (E, ι)).
(iii) Static action-DDH oracle Aa

? . On input an O-oriented curve (E, ι) and a
bitstring h, the oracle returns the bit b = 1 if H(a ∗ (E, ι)) = h, else b = 0.

The corresponding attacks are as follows.

Attack 3.1 (Using the static action-CDH oracle). Query Aa on the curves (Ei, ιi)
to obtain (Ea

i , ι
a
i ). Then inductively proceed as follows.

(i) Base case. Solve the vectorisation problem between (E0, ι0) and (Ea
0 , ι

a
0)

to obtain [c0] in Zn/Λ(0). Then a0 := c0 is equal to a modulo Λ(0).
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(ii) Inductive step. Assume that ai−1 = a modulo Λ(i−1) is known. Compute
(E′

i, ι
′
i) = ai−1∗(Ei, ιi) using any polynomial-time algorithm for evaluating

the class group action (e.g. using [84]). Solve the vectorisation problem
between the sibling curves (E′

i, ι
′
i) and (Ea

i , ι
a
i ) to obtain [ci] in Λ(i−1)/Λ(i).

Then ai := ai−1 + ci is equal to a modulo Λ(i).

Attack 3.2 (Using the hashed static action-CDH oracle). Query Aa
H on the curves

(Ei, ιi) to obtain hi = H((Ea
i , ι

a
i )). Then inductively proceed as follows.

(i) Base case. Compute a0 such that H(a0 ∗ (E0, ι0)) = h0 using brute force,
by acting by (representatives of) elements in Zn/Λ(0). Note that we then
obtain a0 = a modulo Λ(0).

(ii) Inductive step. Assume that ai−1 = a modulo Λ(i−1) is known. Com-
pute (E′

i, ι
′
i) = ai−1 ∗ (Ei, ιi) using any polynomial-time algorithm for

evaluating the class group action (e.g. using [84]). Compute ai such that
H(ai ∗ (Ei, ιi)) = hi using brute force, by acting by (representatives of)
elements in Λ(i)/Λ(i−1). We obtain ai = a modulo Λi.

Attack 3.3 (Using the static action-DDH oracle). Query Aa
? on the curves (Ei, ιi),

together with a guess hg,i = H(gi ∗ (Ei, ιi)) obtained from gi in Λ(i−1)/Λ(i) until
hg,i = hi = H((Ea

i , ι
a
i )) is found. Then proceed with the hashed static action-

CDH attack, Attack 3.2.

We remark that in each of the attacks, the queries to the Aa,Aa
H,Aa

? oracles
are independent to the secret a, making these attacks non-adaptive; in particular
allowing for the expensive computation to be offline. This is a small detail of
Attack 3.3: it really makes all (independent) Aa

? queries first, before proceeding
to the inductive loop; this does not affect the overall complexity and avoids a
more analogous strategy to Attack 3.2, with guesses submitted to the oracle at
every level, which would result in an adaptive attack.

We now proceed with a precise analysis of the attacks’ complexities.

Lemma 3.4. Attack 3.1 makes r+1 Aa-oracle queries and can be implemented
classically using Õ(max({fi}i, |DK |1/2)1/2) group action computations, and quan-
tumly using exp(O(log(max({fi}i, |DK |1/2))1/2)) group action computations. Note
that group action computations ( i.e. computing s ∗ (E, ι) for some known vector
s in Zn) are done without querying the Aa oracle.

Proof. We immediately see that, crucially, the attack performs vectorisation suc-
cessively at every level, not simultaneously; hence costs are added, not multiplied.

The initial vectorisation in the base case (at the crater of the isogeny vol-
cano), occurs in the class group of OK which is of size Õ(|DK |1/2). The vec-
torisation problem at level i between (E′

i, ι
′
i) and (Ea

i , ι
a
i ) is within the same

Λ(i−1)-orbit precisely because ai = a modulo Λ(i−1). Each of these Λ(i−1)-orbits
is simply acted on by κi = Λ(i−1)/Λ(i), where we recall that #κi = fi ± 1.

Having identified the sizes of the groups in which vectorisation occurs, we
obtain the stated complexities by employing meet-in-the-middle search [55] in the
classical case and Kuperberg’s linear hidden shift algorithm [66] in the quantum
setting. ⊓⊔
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Lemma 3.5. Attack 3.2 makes r+1 Aa
H-oracle queries; and can be implemented

classically using Õ(max({fi}i, |DK |1/2)) hashed group action computations, and
quantumly using Õ(max({fi}i, |DK |1/2)1/2) hashed group action computations.
Note that hashed group action computations ( i.e. computing H(s ∗ (E, ι)) for
some known vector s in Zn) are done without using the Aa

H oracle.

Proof. As in Attack 3.1, the vectorisation problems can be solved successively
at every level. The main computational cost is brute-force pre-image search in
the sets κi = Λ(i−1)/Λ(i). Classically, this can be done using Õ(|DK |1/2) hashed
group action computations at the crater, and with O(fi) hashed group action
computations at lower levels. Quantumly, we get a quadratic speedup using
Grover’s search algorithm [58] over the classical brute force search to obtain the
stated complexity. ⊓⊔

Lemma 3.6. Attack 3.3 can be implemented using Õ(max({fi}, |DK |1/2)) clas-
sical Aa

? -oracle queries and hashed group action computations; and quantumly
implemented making Õ(max({fi}i, |DK |1/2)1/2) Aa

? -oracle queries and hashed
group action computations. ⊓⊔

Proof. As in the previous two attacks, the vectorisation problems can be solved
successively at every level. Classically, to obtain the correct guess gi, one must
first compute Õ(|DK |1/2) group actions and then submit these as queries to the
Aa

? oracle at the crater, and O(fi) queries at lower levels; quantumly we may use
Grover search to reduce this to Õ(|DK |1/4) action computations and queries at
the crater, and to O(f

1/2
i ) action computations and queries at levels below. ⊓⊔

Implications for concrete PEARL-SCALLOP parameters. Using the
parameter sets targeting a security level equivalent to CSIDH-{1024, 2048, 4096},
we see that — classically — Attack 3.1 (which assumes access to the static action-
CDH oracle) requires ≈ 264, 2150, 2320 group action evaluations respectively.
Since PEARL-SCALLOP targets 128 classical bits of security, this constitutes a
significant classical security reduction for the CSIDH-1024 case.

The quantum security, however, is substantially affected for all parameter
sets. Indeed, Kuperberg’s algorithm [66] is a generic algorithm for solving discrete
logarithms for commutative group actions, that is subexponential in the size of
the group. Compared to Cl(O), which is of size ≈ 512, 1024, 2048 bits for the
CSIDH-{1024, 2048, 4096} parameter sets respectively, the relative vectorization
groups κi := ker

(
Cl(O(i)) −→ Cl(O(i−1))

)
are significantly smaller; of (maximal)

size 128, 300, and 640 bits respectively. Moreover, since Λ(i) ⊇ Λ(r) for all i, the
quantum cost of the group action evaluation oracle (cf. [10]) is at most as large
as the one for Cl(O) = Cl(O(r))-vectorization (on which the proposed quantum
security is based).

The hashed static action-CDH oracle (Attack 3.2) and static action-DDH
oracle (Attack 3.3) versions of the attack do not directly compromise the con-
jectured classical or quantum security. Indeed, we note that the quantum versions
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of the attacks likely do not outperform solving the full vectorization problem for
Cl(O) using Kuperberg’s algorithm.

3.3 Motivating the oracles

We discuss the motivation of all three oracles in descending strength.

The static action-CDH oracle Aa. First, we emphasize that the Aa oracle
truly gives rise to a static action-CDH oracle, and not a full action-CDH oracle.
This is an important distinction, because action-CDH and action-DLOG are
quantumly equivalent [54]. The cost for evaluating (ta)∗E is t Aa calls, whereas a
full action-CDH oracle would only require O(log(t)) calls, by double-and-adding.
Efficient computation of (ta) ∗ E is a crucial ingredient in the quantum action-
CDH to action-DLOG reduction.

Still, the Aa oracle is very powerful, because it fully impersonates Alice: any
interaction in any cryptographic protocol that defines Alice through knowing a
can be performed by the oracle Aa. However, it is still meaningful to speak of
key recovery from such an oracle because versions of this oracle appear in some
threshold settings.

For example, a naive implementation of the threshold ElGamal encryption
scheme described in [45, Sec. 3.2] exposes the Aa oracle. Indeed, during decapsu-
lation, the first user will apply their secret to an adversarially chosen curve and
relay the result to the next user in the threshold group. If the threshold parties
do not use secure channels for communication, this value can be extracted by the
same adversary that submitted the curve. Even if they do use secure channels,
the adversary must be part of the threshold group, which is a common threat
model in the threshold setting.

The hashed static action-CDH oracle Aa
H. This oracle is akin to obtaining

the session key obtained through a key exchange, where the hash function is
replaced with a key-derivation function.

The query complexity r+1 of our attack is dictated by the number r of (large)
prime divisors of the conductor f , i.e. logarithmic in f . Concretely though, to
make the ascending isogenies computationally infeasible, the conductor is usually
particularly non-smooth, with only a handful of large factors e.g. 3 for PEARL-
SCALLOP’s CSIDH-1024 parameters set. As such, just 4 leaked session keys
would give sufficient information to mount the offline attack.

The static action-DDH oracle Aa
?. This oracle is naturally instantiated in

many internet communication protocols. An adversary may initiate communica-
tions with a server by submitting many non-primitively oriented curves, and if
they can decrypt the responses, meaning they have correctly guessed the session
keys, they can proceed with the inductive phase of the attack.
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4 Validating primitive orientations

One method to thwart these active “class group downgrade” attacks is to validate
the orientation of the curves before continuing with the protocol. In the language
of cryptographic group actions [3] (with G acting on X), validation means that
parties simply ensure that a proposed element x, e.g. given as a bitstring, actually
encodes an element in the set X before acting with their secrets g in G. In the
context of a NIKE, this is referred to as public-key validation, since parties act
by their secrets on (potentially adversarially generated) public keys.

We note that every orientation ι : K −→ End0(E) is uniquely defined by
the image γ = ι(ω) of a generator ω of Opr(ι). Conversely, every non-scalar
endomorphism γ of E defines a Q(

√
disc(γ))-orientation ιγ characterised by

(tr(γ) −
√
disc(γ))/2 7→ γ. In practice, orientations are usually explicitly en-

coded through an endomorphism. Indeed, the only family of isogeny class group
computations that do not do this are the CSIDH/CSURF families [25,21], for
there the orientation is implicitly given by the Frobenius endomorphism.

Hence, we assume that the orientation is given as an endomorphism ω on E.
To verify that (E, ιω) is in fact a primitive O-orientation for the desired order
O, one must verify that Z[ω] has the correct discriminant, which establishes
that Z[ω] ≃ O, and that ιω is a primitive Z[ω]-orientation. We treat these two
challenges in the next two subsections.

4.1 Verifying the discriminant

The general setting of an oriented group action requires that the orientation ω is
given by an efficient representation [89, Sec. 2.1]. In particular, this means that
the degree of ω is (implicitly or explicitly) given.

Concretely in PEARL-SCALLOP we recall that, ω is represented as a pair
of points P,Q ∈ E of order 2e which generate the kernels of the isogenies φP , φQ

respectively and satisfy φ̂QφP = ω. The order O by which E should be prim-
itively oriented by has discriminant f2DK , and the degree of ω should be 22e,
both values supplied in the public parameters of the scheme. To verify the de-
gree of ω, one checks that P and Q have order 2e and that φ̂QφP is a cyclic
endomorphism. Since φ̂QφP has degree 22e, its cyclicity could be checked by
verifying that φ̂QφP (E[2]) ̸= {0}. Nevertheless, we postpone the cyclicity check
to the primitivity check, as the orientation being primitive implies that φ̂QφP

is cyclic.
Then, to verify the that discriminant satisfies disc(ω) = tr(ω)2 − 4 deg(ω) =

disc(O), it remains to verify that the trace satisfies tr(ω)2 = disc(O)+ 4 deg(ω).
Whilst one can compute the trace in polynomial time, with reasonable runtimes
in practice [82]; we must merely verify that the (square of the) trace of the
given endomorphism matches what we expect. This distinction allows to avoid
potentially expensive discrete logarithm computations.

In general, a natural way to check the trace is to evaluate ω and its dual ω̂
on one of the points of a basis {S1, S2} of E[N ] for some integer N , compute
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the Weil pairing

eN (S1, (ω + ω̂)(S2)) = eN (S1, S2)
tr(ω)

and check whether it matches eN (S1, S2)
±
√

disc(O)+4 deg(ω) for the expected value
of the discriminant disc(O).

This test only verifies the value of tr(ω) modulo N , hence only becomes
sufficient when N ≥ 2

√
deg(ω). Indeed, assuming ω is not (multiplication by)

an integer, the order it generates Z[ω] has negative discriminant Disc(Z[ω]) =
tr(ω)2 − 4 deg(ω) and so tr(ω)2 < 4 deg(ω). Note that verifying the correct sign
of tr(ω) is not needed, since only the square is relevant for the discriminant. In
fact, we can always assume that the parameters are chosen such that tr(ω) is
positive, as one can always replace ω by −ω.

In the rest of this subsection, we improve on this idea to design a trace
validation method to validate the trace t of any supersingular endomorphism θ
in End(E) of known degree d satisfying 4

√
d+1 ≤ p+1, by evaluating exclusively

ω̂. This is especially relevant for PEARL-SCALLOP, because we see that the
group-action evaluation algorithm (Algorithm 1) already evaluates ω̂ on a large
torsion basis. We note that an early rejection due to an incorrect orientation
does not leak any secret information, because the values of ω̂ do not depend
on secrets, even if they are re-used later in conjunction with the secret key to
compute the action. Finally, we note that when validating the trace up to sign
one can relax the requirement on d to 2

√
d+ 1 ≤ p+ 1.

Recall that the field characteristic p has the shape p+1 = c2e
∏n

i=1 ℓi where
the ideals lying above the primes ℓi are used to evaluate the group action; and
the concrete parameter choices enforce that p ≥ 22e = deg(ω).

Lemma 4.1. Let E be a supersingular curve and let θ ∈ End(E) be an endomor-
phism of degree d and of positive trace. Let t be an integer such that 0 ≤ t ≤ 2

√
d

and let R be a point of order N ≥ 2
√
d+ 1. If θ2(R)− [t]θ(R) + [d]R = 0, then

tr(θ) = t.

Proof. Let u > 0 be the trace of θ. Then θ2(R)− [u]θ(R) + [d]R = 0. Hence, we
have that θ2(R)−[u]θ(R)+[d]R = θ2(R)−[t]θ(R)+[d]R, that is [u]θ(R) = [t]θ(R),
implying that u ≡ t mod N . Since 0 ≤ u, t ≤ 2

√
d < N , we conclude u = t. ⊓⊔

To verify the trace of a given ω using Lemma 4.1, we only need to check
that the (purported) minimal polynomial of ω holds on a single point R of order
N ≥ 2

√
deg(ω) + 1 = 2e+1 + 1.

We now describe how to check that ω̂2(R)−[t]ω̂(R)+[deg(ω)]R = 0. Let S1,S2

be a basis of E[N ], let S′
1 = ω̂(S1) and S′

2 = ω̂(S2). Write ω̂(R) = [x]S1 + [y]S2,
then

eN (ω̂(R), S2) = eN (S1, S2)
x, eN (S1, ω̂(R)) = eN (S1, S2)

y, and

ω̂2(R) = ω̂([x]S1 + [y]S2) = [x]ω̂(S1) + [y]ω̂(S2) = [x]S′
1 + [y]S′

2.
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Hence, we obtain that ω̂2(R) − [t]ω̂(R) + [deg(ω)]R = 0 if and only if ω̂2(R) =
[t]ω̂(R)−[deg(ω)]R, which holds if and only if [t]ω̂(R)−[deg(ω)]R = [x]S′

1+[y]S′
2.

Setting R2 = [t]ω̂(R)− [deg(ω)]R, the last equality holds if and only if

eN (R2, S
′
2) = eN (S′

1, S
′
2)

x = eN (S1, S2)
x deg(ω) = eN (ω̂(R), S2)

deg(ω) and

eN (S′
1, R2) = eN (S′

1, S
′
2)

y = eN (S1, S2)
y deg(ω) = eN (S1, ω̂(R))

deg(ω).

Notice that if one chooses R = S1, then ω̂(R) = S′
1 and

eN (S′
1, R2) = eN (S′

1, [t]S
′
1−[deg(ω)]S1) = eN (S1, S

′
1)

deg(ω) = eN (S1, ω̂(R))
deg(ω),

meaning that the second check always passes. We are hence left with only one
pairing equality to be tested.

To summarize, let S1, S2 be a basis of E[N ], let S′
1 = ω̂(S1) and S′

2 = ω̂(S2).
The trace check is done by setting R2 = [t]ω̂(S1) − [deg(ω)]S1, and checking
whether the following equality holds

eN (R2, S
′
2) = eN (S′

1, S2)
deg(ω).

In the summary (Section 4.3) of our orientation validation, we will be using a
point R = S1 of order a (small) multiple of p+ 1.

4.2 Testing for primitivity

We now present two different algorithms to test for primitivity: the first method
follows a more folklore approach to verify primitivity by computing a handful
of group actions on carefully selected ideals; the second method applies more
recently developed techniques, employing higher-dimensional isogenies to test
the orienting endomorphism for divisibility by primes dividing the conductor.

The only requirement of the first method is that the class group structure is
known, which is exactly the setting which all SCALLOP variants target. Con-
versely, the second method always runs in polynomial time for all isogeny class
group actions, and when the discriminant of the orienting endomorphism is suf-
ficiently small in comparison to the available 2-torsion, can be concretely imple-
mented with very performant algorithms.

On balance, the PEARL-SCALLOP parameters allow for concrete instanti-
ations in which the second method to likely outperform the first.

Using the group action If a given O-orientation (E, ι) is contained in a
primitive order O′ ⊋ O, then the action on (E, ι) by any ideal a ⊆ O such
that aO′ represents a trivial element in Cl(O′) is trivial, even if a represents a
non-trivial class in Cl(O). As a consequence, testing triviality of the action by
such an ideal for every superorder O′ of O allows one to test whether (E, ι) is
primitive or not.

Moreover, if (E, ι) cannot be extended to an intermediate order O ⊊ O′′ ⊆
O′, then clearly it cannot be extended to O′. Consequently, to verify whether
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(E, ι) is primitively oriented by O, it suffices to perform this action-triviality
test for all orders O′′ in which O has prime relative conductor. In other words,
if O has conductor f =

∏r
i=1 fi in OK , then it suffices to test orders Ofi with

conductor f/fi on OK , for all 1 ≤ i ≤ r.
To carry out this check, one is faced with the problem of finding non-principal

ideals of O that become principal when lifted to Ofi , namely ideals whose class
is in the kernel of the map Cl(O) −→ Cl(Ofi) from (1). We sketch here how one
can compute such ideals, provided that the structure of Cl(O) and Cl(Ofi) is
known.

Remark 4.2. The outlined strategy is reminiscent of [14, Sec. 3.2], in which the
purported conductor u of the endomorphism ring of an ordinary curve is verified.
Our situation is different, because the parameters of our isogeny volcano allow
us to compute the class group structure at every level O(i), and so we do not
need to FindRelations during certification.

In PEARL-SCALLOP, the group structure of Cl(O) is computed in the pa-
rameter generation phase, and public (see [4, Section 2.3] on how it is computed
in practice). It is given as a set of O-ideals {lj}1≤j≤n whose classes generate the
whole class group, and a basis of the relation lattice ΛO (equal to Λ(r) in the
notation of Section 3.1). Similarly, one can compute Cl(Ofi) by computing its
relation lattice Λfi . A way to find ideals in ker(Cl(O) −→ Cl(Ofi)) and express
them in terms of a given set of generators of Cl(O) is described in [39, Section
3.3], in a context where O has absolute conductor which is a power of a small
prime, and hence Cl(O) is cyclic or almost cyclic. Nevertheless, we can use a
similar approach for a conductor which is a product of distinct primes that split
in OK , as is the case for PEARL-SCALLOP.

First of all, we show that ker(Cl(O) −→ Cl(Ofi))
∼= F×

fi
for any prime fi that

splits in OK , in particular it is a cyclic subgroup of order fi − 1 in Cl(O).

Lemma 4.3. Let K be an imaginary quadratic field and let ℓ be a prime that
splits in K. Let O1 ⊇ O2 be orders of K with relative conductor [O1 : O2] = ℓ.
Assuming that (O1)

× = {±1}, then

ker(Cl(O2) −→ Cl(O1)) ∼= F×
ℓ .

Before proving the lemma, we remark that the requirement (O1)
× = {±1} only

excludes O1 being the maximal order of K = Q(
√
−1) or of K = Q(

√
−3).

Proof. If (O1)
× = {±1} then (O2)

× = {±1}, and the exact sequence (1) becomes

1 −→ (O1/ℓO1)
×

(O2/ℓO1)×
−→ Cl(O2) −→ Cl(O1) −→ 1.

In particular, ker(Cl(O2) −→ Cl(O1)) ∼= (O1/ℓO1)
×

(O2/ℓO1)×
. Assume without loss of gen-

erality that K ∼= Q(X)/(X2 +D) for some square-free integer D. Let L be the
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absolute conductor of O2, then ℓ divides L and L/ℓ is the absolute conductor of
O1. Then,

O1/ℓO1
∼=

Z[X]/(X2 +DL2/ℓ2)

ℓ(Z[X]/(X2 +DL2/ℓ2))
∼=

Fℓ[X]

(X2 +DL2/ℓ2)
.

Since ℓ splits in K, it holds that
(−D

ℓ

)
= 1, hence

Fℓ[X]

(X2 +DL2/ℓ2)
∼= Fℓ × Fℓ.

Since O2/ℓO1 is a subring of O1/ℓO1, and [O1/ℓO1 : O2/ℓO1] = ℓ, it follows
that O2/ℓO1

∼= Fℓ, embedding diagonally into O1/ℓO1
∼= Fℓ × Fℓ. Finally,

(O1/ℓO1)
×

(O2/ℓO1)×
∼=

F×
ℓ × F×

ℓ

F×
ℓ

∼= F×
ℓ ,

where the last isomorphism is given by (x, y) 7→ xy−1. ⊓⊔

Once we know that ker(Cl(O) −→ Cl(Ofi)) is a cyclic group of order fi − 1,
we are left with finding an element in that group. Since

ker(Cl(O) −→ Cl(Ofi)
∼= ΛOfi

/ΛO,

upon computing the orders of the classes corresponding to each li in Cl(O),
we can sample vectors (e1, . . . en) ∈ ΛOfi

that are not zero modulo ΛO, un-
til a product g =

∏n
i=1 l

ei
i has order dividing fi − 1, yielding an element of

ker(Cl(O) −→ Cl(Ofi)).
Notice that in this approach, computing the special test ideals is done once for

each parameter set during the parameter generation stage and can be published
as part of public parameters. As such, computing the test ideals themselves does
not need to be done during protocol execution; however, before computing any
group action by a secret ideal, one must first compute the action of the test
ideals on the given curve to validate its orientation. In PEARL-SCALLOP, this
amounts to r additional group action computations. Concretely, for the CSIDH-
1024 parameters, r = 3, yielding a slowdown factor of 4.

We leave it as an open question to investigate whether it is possible to find
particularly cheap test ideals to compute e.g. whose exponent vectors have low
ℓ1-norm.

Using a division algorithm. We now present another approach for validat-
ing whether a given orientation is primitive. In essence, we only need to check
whether a well-chosen endomorphism coming from the orientation is cyclic.

Lemma 4.4. Let E be an elliptic curve and γ an endomorphism of discriminant
f2d0, where d0 is a fundamental discriminant. Then ιγ is a primitive Z[γ]-
orientation on E if and only if γ0 = 2γ − tr(γ) is not divisible by 2ρ for any
prime factor ρ > 1 of f .
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Proof. Viewing γ as an algebraic integer, we see that (2γ−tr(γ))/(2ρ) generates
the index-ρ superorder of Z[γ] for any prime divisor ρ of f . As such, if the
endomorphism 2γ−tr(γ) factors through scalar multiplication by 2ρ for a divisor
ρ of f , the orientation ιγ is not Z[γ]-primitive. ⊓⊔

This lemma delivers us a primitivity testing algorithm. Indeed, the current
instantiations of the isogeny class group action encode the orientations of curves
E by endomorphisms γ in efficient isogeny representation with a discriminant
df2. Because it is given in efficient isogeny representation, the degree of γ is
known and its trace can be verified as a function of degree and supposed dis-
criminant. Once the discriminant is known to be tr(γ)2 − 4 deg(γ) = f2d, it
remains to verify whether 2γ − tr(γ) is divisible by 2ρ for any prime divisor ρ
of f .

The general problem of testing whether an isogeny φ : E1 −→ E2 is divisible by
an integer can be solved in asymptotic polynomial time [89, Prop. 6.6]. However,
we realize that the case of PEARL-SCALLOP is particularly tame, resulting
in the computation of 4-dimensional 2-isogenies instead of 8-dimensional N -
isogenies (which would be necessary general). Indeed, computing 4-dimensional
2-isogenies can be done efficiently in practice [38,41].

We note that in the setting of PEARL-SCALLOP the conductor f is the
product of a few large primes, the fundamental discriminant DK is 1 modulo 4,
and the endomorphism ω0 = 2ω− tr(ω) has degree 4 deg(ω)− tr(ω)2 = −f2DK .
Picking N = 2•, one sees that the quantity N−deg(φ) = 2•+f2DK is 1 modulo
4, and so there is hope that concrete parameters can be chosen so that it is a sum
of two squares. Robert’s embedding lemma and the subsequent division algorithm
then would tell us that ω0 can be tested for division by computing 4-dimensional
2-isogenies.

By tweaking the parameter generation of PEARL-SCALLOP and rejecting
early by using bounded trial divisions whilst testing whether 2ei − (f/fi)

2DK

is a sum of two squares, we found the following CSIDH-1024 parameters within
≈ 225 re-randomisations, taking ≈ 6 Core-GHz-Hours19. The parameters are
defined through the seeds

a = 271392203191938564610043121904428032251, N = 2129,

and derived from the expressions d = 2N2 − a2, f1 = a, f2 = (a + N)/3, f3 =
N −a, f = f1f2f3, ensuring that the quantities 2ei +(f/fi)

2DK are sums of two
squares with e1 = 1039, e2 = 1036, e3 = 1037. We recall that the ei determine
the length of the 4-dimensional 2-isogeny chains, and so play a role in the cost
of computing them.

The “unofficial” CSIDH-512 parameters provided with the PEARL-SCALLOP
implementation on GitHub20 have f = f1 of 128 bits and d = 1 (mod 4) of 256
bits. Their concrete choices lead to 2256−d being a perfect square, in which case
19 Or, more precisely, about 40 seconds on a server with 255 cores and a clock speed

of 2.2 GHz.
20 https://github.com/biasse/SCALLOP-params

https://github.com/biasse/SCALLOP-params
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a 2-dimensional 2-isogeny chain suffices for validation. Such isogenies have been
implemented in the context of SQISign [1] and take mere milliseconds for the
NIST-V parameters (which also correspond to a field of characteristic 2500).

We note that for the CSIDH-{1024, 2048, 4096} parameters, the large factors
m of f are of size {128, 299, 640} bits and so deg((2ω− tr(ω))/m) = (4 deg(ω)−
tr(ω)2)/m2 = (f/m)2DK ≈ {2768, 21450, 22816}, but the available 2•-torsion
is 2e ≈ {2512, 21024, 22048}. This necessitates splitting the HD-representation;
a technical endeavour, but with very little overhead since the two isogeny chains
one computes are half as long.

Remark 4.5. We remark that in the precise setting of PEARL-SCALLOP, ω
generates an order of conductor gf , where g is a small smooth number. To verify
(non-)divisibility by these small factors, we evaluate on the respective torsion
subgroups, instead of invoking the expensive higher-dimensional test.

Performance comparison. To give a rough estimate of the cost of the 4-
dimensional isogenies in the second primitivity test for the CSIDH-1024 param-
eter set, we compare to the qt-PEGASIS implementation of [40, Tab. 1].

Their C implementation takes 146 milliseconds to compute one chain of 4-
dimensional 2-isogenies of length roughly 1024 steps over a prime field Fp of
characteristic roughly 21024. Since the isogenies of PEARL-SCALLOP are de-
fined over Fp2 , and the arithmetic in 4-dimensional isogeny computation is mostly
addition and multiplication [38, Table 1], a rough figure of 0.5 (≈ 3·0.15) seconds
can be used to estimate the cost of the corresponding 4-dimensional 2-isogeny
chain over Fp2 . Repeating for all 3 factors of the conductor f = f1f2f3, this gives
a total overhead of around 1.5 seconds.

This very favourably compares to the PEARL-SCALLOP, whose C++ im-
plementation which takes 58 seconds to evaluate one action at the CSIDH-1024
parameters, and would require an additional r = 3 group action computations.

Remark 4.6. We remind that PEARL-SCALLOP is exactly constructed to allow
for computing the class group structure, something which appears to be out
of reach for the parameters in qt-PEGASIS, which [40] implements. So even
though [40] can be used to implement a much faster class group action, we note
it has less features.

4.3 Summary of the key validation

We now summarize our key validation. Recall that the base prime is of the form
p = c2e

∏n
i=1 ℓi − 1. Let f = f0 · f1 · · · · · fk be the conductor of O, where fi for

1 ≤ i ≤ k are the large prime factors and f0 the (very) small smooth factor of
f . Let q = q1 · · · qr be the product of the prime factors of f0. Let (E, P , Q) be
a PEARL-SCALLOP public key that we want to validate and act upon with an
ideal a =

∏N
i=1 li of norm L =

∏N
i=1 ℓi = N(a).

For evaluating the group action, we need to compute ω̂(E[L]), while for
the primitivity test with respect to the large prime factors fi for 1 ≤ i ≤ k
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of the conductor f , we need to evaluate 2ω̂ − tr(ω̂) on E[2e] before running the
divisibility test discussed in Section 2.3 and 4.2. When checking the primitivity of
the orientation with respect to the small prime factors qi for 1 ≤ i ≤ r of f0, one
can directly evaluate 2ω−tr(w) on E[qi] and check that (2ω̂−tr(ω̂))(E[qi]) ̸= {0}.
We hence need the evaluation of 2ω̂ − tr(ω̂) on E[q2e], which can be derived
from that of ω̂ on E[q2e]. To batch all these evaluations, we set q = 2q1 · · · qr
and M = (p + 1)q′ where q′ = q/ gcd(p + 1, q) and evaluate ω̂ on E[M ]. This
evaluation allows to check whether ω̂ is an endomorphism on E by rejecting if
the image points do not lie on E. Moreover, it is used to check the trace as
described in Section 4.1. One then retrieves the evaluation of 2ω̂− tr(ω̂) on E[qi]
or E[2qi] if qi = 2, and (relying on Lemma 4.4) uses it to check whether the
orientation is primitive with respect to the small prime factors qi of f0. One also
retrieves the evaluation of 2ω̂− tr(ω̂) on E[2e], and uses it to check whether the
orientation is primitive with respect to the large prime factors fi for 1 ≤ i ≤ k of
f . If all the checks pass, one retrieves ω̂(E[L]) from ω̂(E[M ]) and proceeds to the
computation of the group action. This full process is summarized in Algorithm 2.

Remark 4.7. In Algorithm 2, step 1-29 constitute the key validation, while step
30-33 constitute the group action evaluation — these are the only steps where
the secret key is used. Consequently, whether key validation succeeds or fails
reveals no information about the secret key.
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Algorithm 2 GroupActionWithKeyValidation(a, E, P,Q)
Input: A smooth O-ideal a =

∏n
i=1 li, an O-oriented elliptic curve E, points P,Q ∈ E

generating isogenies such that φ̂Q◦φP is an endomorphism corresponding to an element
of O of norm 22e and of trace t. The large prime factors fi (1 ≤ i ≤ k) and the very
small smooth factor f0 of the conductor f = f0 · f1 · · · · · fk of O. Let q = 2q1 · · · qr be
the product of the prime factors of f0.
Output: An O-oriented curve (Ea, Pa, Qa) = a ∗ (E,P,Q), or Invalid.
1: Let q′ = q/ gcd(p+ 1, q) and let M = (p+ 1)q′.
2: Let S1, S2 be a basis of E[M ].
3: Compute ω̂ = φ̂P ◦ φQ together with S′

1 = ω̂(S1), S′
2 = ω̂(S2).

4: if ω̂ is not an endomorphism of E then
5: return Invalid. ▷ ω is not an endomorphism
6: end if
7: Let R2 = [t]S′

1 − [deg(ω)]S1.
8: if eM (R2, S

′
2) ̸= eM (S′

1, S2)
deg(ω) then

9: return Invalid. ▷ Trace is incorrect
10: end if
11: Let U1 = [2]S′

1 − [tr(ω)]S1, U2 = [2]S′
2 − [tr(ω)]S2. ▷ Evaluating 2ω̂ − tr(ω̂)

12: Let Q1 = [M/q]U1, Q2 = [M/q]U2

13: for i ∈ {1, . . . r} do
14: if qi = 2 then
15: if [q/4]Q1 = 0 = [q/4]Q2 then
16: return Invalid. ▷ Non primitive orientation WRT 2
17: end if
18: else
19: if [q/qi]Q1 = 0 = [q/qi]Q2 then
20: return Invalid. ▷ Non primitive orientation WRT qi
21: end if
22: end if
23: end for
24: Let T1 = [M/2e]S1, T ′

1 = [M/2e]U1, T2 = [M/2e]S2, T ′
2 = [M/2e]U2

25: for i ∈ {1, . . . k} do
26: if {(Tj , [f

−1
i ]T ′

j), j ∈ {1, 2}} represents an isogeny of degree f2DK/f2
i then

27: return Invalid. ▷ Non primitive orientation WRT fi
28: end if
29: end for ▷ End of the key validation
30: Let L =

∏N
i=1 ℓi = N(a).

31: Compute B1 = [M/L]S1, B2 = [M/L]S2, B′
1 = [M/L]S′

1, B′
2 = [M/L]S′

2.
32: Use B1, B′

1, B2 and B′
2 to compute (Ea, φa(P ), φa(Q)) = a ∗ (E,P,Q). ▷ Alg.1.

33: return (Ea, φa(P ), φa(Q)).
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