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Cryptographic Group Actions

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look 𝐺 = ⟨𝑔0⟩ order 𝑝

(i) Sample 𝑎, 𝑏 $← ℤ/𝑝ℤ − {0} ≅ (ℤ/𝑝ℤ)×

(ii) Publish 𝑔𝑎0 , 𝑔𝑏0
(iii) Recover 𝑘 = 𝑔𝑎𝑏0 = (𝑔𝑎0 )

𝑏 = (𝑔𝑏0)
𝑎

Insight This exponentiation is a group action! (ℤ/𝑝ℤ)
× ×𝐺 −→ 𝐺; (𝑒, 𝑔) ↦ 𝑔𝑒

Recall (Group action) 𝐻 a group, 𝑋 a set
𝐻 ×𝑋 −→ 𝑋 (ℎ, 𝑥) ↦ ℎ ⋅ 𝑥

(i) 1𝐻 ⋅ 𝑥 = 𝑥 (Exponentiation: 𝑔1 = 𝑔)

(ii) ℎ2 ⋅ (ℎ1 ⋅ 𝑥) = (ℎ2ℎ1) ⋅ 𝑥 (Exponentiation: (𝑔𝑎)𝑏 = 𝑔𝑎𝑏)
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Cryptography from group actions

Rephrase NIKE from group action

Setup: 𝐻 ×𝑋 −→ 𝑋 group action, 𝐻 commutative, 𝑥0 ∈ 𝑋

(i) Sample 𝑎, 𝑏 $← 𝐻

(ii) Publish 𝑎 ⋅ 𝑥0, 𝑏 ⋅ 𝑥0
(iii) Recover 𝑘 = (𝑎𝑏) ⋅ 𝑥0 = 𝑏 ⋅ (𝑎 ⋅ 𝑥0) = 𝑎 ⋅ (𝑏 ⋅ 𝑥0)

Cryptographic Group Action if it is hard to If it is hard to

(i) (“DLP”) Recover 𝑎 from (𝑥, 𝑎 ⋅ 𝑥)

(ii) (“CDHP”) Recover 𝑘 = (𝑎𝑏) ⋅ 𝑥 from (𝑥, 𝑎 ⋅ 𝑥, 𝑏 ⋅ 𝑥)

Note These are equivalently hard problems on a quantum
computer [GPSV18,MZ22,GLM24]
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Cryptographic Group Actions

Conclusion CGAs generalise exponentiation and we get a NIKE

…but also

Public Key Encryption [CLM+18]

Signatures [DFG18,BKV19]

Threshold Signatures [DFM19]

Oblivious Transfer [DdSGOPS18]

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT,
Naor-Reingold PRF) [ADFMP20]

Since: e.g. Oblivious Pseudorandom Functions [DdSGP23]

Naturally arising CGA from isogenies: Isogeny Class-Group Action [Cou97,RS06]
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Elliptic curves and Isogenies

Isogenies are morphisms of algebraic groups

Slogan “Isogenies preserve geometric and group structure”

Example Scalar multiplication
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Elliptic curves and Isogenies

Lemma Every isogeny 𝜑∶ 𝐸 −→ 𝐸 ′ has a reverse �̃� ∶ 𝐸 ′ −→ 𝐸

�̃� ∘ 𝜑 = [𝑑]𝐸 𝜑 ∘ �̃� = [𝑑]𝐸′ 𝑑 = deg(𝜑)

Naïve Evaluating an isogeny of degree 𝑑 costs 𝑂(𝑑)

Lemma deg(𝜑𝜓) = deg(𝜑)deg(𝜓) and when deg(𝜑) = 𝑝𝑚⋯𝑝1

𝐸 𝐸 ′

𝐸1 ⋯ 𝐸𝑚−1

𝜑

𝜑1
𝜑2 𝜑𝑛−1

𝜑𝑚

deg(𝜑𝑖) = 𝑝𝑖

Better If all 𝑝𝑖 ≤ 𝐵 cost of evaluating is 𝑂(𝐵log(𝑑))

Slogan “Isogenies of smooth degree are easy to compute”
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Towards an action: The Endomorphism Ring

Definition Endomorphism Ring
End(𝐸) = {𝜑∶ 𝐸 −→ 𝐸 ∣ 𝜑 an isogeny}

(𝜑 + 𝜔)(𝑃) def.= 𝜑(𝑃) + 𝜔(𝑃)

(𝜑𝜔)(𝑃) def.= (𝜑 ∘ 𝜔)(𝑃)

Example Scalar multiplication [𝑁 ]𝐸 is an endomorphism 𝐸 −→ 𝐸
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Towards an action: Classifying the Endomorphism Rings

Theorem (Deuring) End(𝐸) isomorphic (as ring) to

(i) ℤ

(ii) Rank-2 lattice ℤ + 𝜎ℤ ⊆ imaginary quadratic field
Commutative
Ordinary

(iv) Rank-4 lattice ℤ + 𝜎ℤ + 𝜔ℤ + 𝜁ℤ ⊆ quaternion algebra
Non-commutative
Supersingular

We are interested in the ordinary case
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Towards an action: Visualising the Endomorphism Ring

Imaginary Quadratic Fields

ℚ(√𝐷) ⊆ ℂ 𝐷 < 0 ∈ ℤ

End(𝐸) ≅ 1ℤ + 𝜎ℤ

Lattice + Ring = Order ⇝ End(𝐸) ≅ 𝒪

(1, 0)

𝜎
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Isogeny Class-Group Action

Correspondence Ideal 𝐼 ⊆ 𝒪 ≅ End(𝐸) ⇝ Isogeny 𝐼 ∶ 𝐸 −→ 𝐸𝐼

Definition Ideal Class Group and its Action

Cl(𝒪) = {Classes [𝐼 ] of ideals 𝐼 ⊆ 𝒪 s.t.
(i) End(𝐸𝐼) ≅ End(𝐸) ≅ 𝒪
(ii) [𝐼 ] = [𝐽 ] ⟺ 𝐸𝐼 ≅ 𝐸𝐽

}

Group law: [𝐼 ][𝐽 ] = [𝐼𝐽 ], [𝒪] is the neutral element and [𝐼 ]−1 = [ 𝐼 ]

Acts on

Ell(𝒪) = {Isomorphism classes [𝐸] of elliptic curves 𝐸 s.t. End(𝐸) ≅ 𝒪}

via
Cl(𝒪) × Ell(𝒪) −→ Ell(𝒪) ([𝐼 ], [𝐸]) ↦ [𝐼 ] ⋅ [𝐸] = [𝐸𝐼]



11/38

Isogeny Class-Group Action

Correspondence Ideal 𝐼 ⊆ 𝒪 ≅ End(𝐸) ⇝ Isogeny 𝐼 ∶ 𝐸 −→ 𝐸𝐼

Definition Ideal Class Group and its Action

Cl(𝒪) = {Classes [𝐼 ] of ideals 𝐼 ⊆ 𝒪 s.t.
(i) End(𝐸𝐼) ≅ End(𝐸) ≅ 𝒪
(ii) [𝐼 ] = [𝐽 ] ⟺ 𝐸𝐼 ≅ 𝐸𝐽

}

Group law: [𝐼 ][𝐽 ] = [𝐼𝐽 ], [𝒪] is the neutral element and [𝐼 ]−1 = [ 𝐼 ]

Acts on

Ell(𝒪) = {Isomorphism classes [𝐸] of elliptic curves 𝐸 s.t. End(𝐸) ≅ 𝒪}

via
Cl(𝒪) × Ell(𝒪) −→ Ell(𝒪) ([𝐼 ], [𝐸]) ↦ [𝐼 ] ⋅ [𝐸] = [𝐸𝐼]



11/38

Isogeny Class-Group Action

Correspondence Ideal 𝐼 ⊆ 𝒪 ≅ End(𝐸) ⇝ Isogeny 𝐼 ∶ 𝐸 −→ 𝐸𝐼

Definition Ideal Class Group and its Action

Cl(𝒪) = {Classes [𝐼 ] of ideals 𝐼 ⊆ 𝒪 s.t.
(i) End(𝐸𝐼) ≅ End(𝐸) ≅ 𝒪
(ii) [𝐼 ] = [𝐽 ] ⟺ 𝐸𝐼 ≅ 𝐸𝐽

}

Group law: [𝐼 ][𝐽 ] = [𝐼𝐽 ], [𝒪] is the neutral element and [𝐼 ]−1 = [ 𝐼 ]

Acts on

Ell(𝒪) = {Isomorphism classes [𝐸] of elliptic curves 𝐸 s.t. End(𝐸) ≅ 𝒪}

via
Cl(𝒪) × Ell(𝒪) −→ Ell(𝒪) ([𝐼 ], [𝐸]) ↦ [𝐼 ] ⋅ [𝐸] = [𝐸𝐼]



11/38

Isogeny Class-Group Action

Correspondence Ideal 𝐼 ⊆ 𝒪 ≅ End(𝐸) ⇝ Isogeny 𝐼 ∶ 𝐸 −→ 𝐸𝐼

Definition Ideal Class Group and its Action

Cl(𝒪) = {Classes [𝐼 ] of ideals 𝐼 ⊆ 𝒪 s.t.
(i) End(𝐸𝐼) ≅ End(𝐸) ≅ 𝒪
(ii) [𝐼 ] = [𝐽 ] ⟺ 𝐸𝐼 ≅ 𝐸𝐽

}

Group law: [𝐼 ][𝐽 ] = [𝐼𝐽 ], [𝒪] is the neutral element and [𝐼 ]−1 = [ 𝐼 ]
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Ell(𝒪) = {Isomorphism classes [𝐸] of elliptic curves 𝐸 s.t. End(𝐸) ≅ 𝒪}
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Computing this isogeny class-group action

Naïve

Input: [𝐼 ] ∈ Cl(𝒪) and [𝐸] ∈ Ell(𝒪)

Output: [𝐼 ] ⋅ [𝐸] = [𝐸𝐼]

(i) Choose representative 𝐽 ⊆ 𝒪 so that [𝐽 ] = [𝐼 ]

(ii) Construct isogeny 𝐽 ∶ 𝐸 −→ 𝐸𝐽

(iii) Evaluate the isogeny 𝐽 ∶ 𝐸 −→ 𝐸𝐽 to obtain equation for 𝐸𝐽

(iv) Return [𝐸𝐽] = [𝐸𝐼]

Problem 𝐽 ∶ 𝐸 −→ 𝐸𝐽 might have large non-smooth degree
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Computing this isogeny class-group action
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Higher dimensional methods: Abelian Varieties

Recall Elliptic curves are algebraic groups
…𝐸 × 𝐸 also group
…𝐸 × 𝐸 also algebraic
…but 𝐸 × 𝐸 is not an Elliptic curve
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Resolution

Products of elliptic curves are Abelian varieties

Isogenies between Abelian varieties are morphisms of algebraic groups

Example Scalar multiplication [𝑁 ]𝐴 ∶ 𝐴 −→ 𝐴;𝑃 ↦ 𝑁𝑃 = 𝑃 +⋯+𝑃
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Abelian Varieties: Features of isogenies

Lemma

For all isogenies
𝜑∶ 𝐸1 ×⋯×𝐸𝑛 −→ 𝐸 ′

1 ×⋯×𝐸 ′
𝑛

the reverse map exists
�̃� ∶ 𝐸 ′

1 ×⋯×𝐸 ′
𝑛 −→ 𝐸1 ×⋯×𝐸𝑛

Caution However it must not necessarily satisfy
�̃� ∘ 𝜑 = [𝑑]𝐸1×⋯×𝐸𝑛 𝜑 ∘ �̃� = [𝑑]𝐸′

1×⋯×𝐸′𝑛

When it does, we say that 𝜑 has degree 𝑑

Naïve Evaluating an isogeny of degree 𝑑 costs 𝑂(𝑑)
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Abelian Varieties: Features of isogenies

Lemma deg(𝜑𝜓) = deg(𝜑)deg(𝜓) and when deg(𝜑) = 𝑝𝑚⋯𝑝1

𝐸1 ×⋯×𝐸𝑛 𝐸 ′
1 ×⋯×𝐸 ′

𝑛

𝐴1 ⋯ 𝐴𝑚−1

𝜑

𝜑1 𝜑2 𝜑𝑛−1
𝜑𝑚

deg(𝜑𝑖) = 𝑝𝑖

Better If all 𝑝𝑖 ≤ 𝐵 cost of evaluating is 𝑂(𝐵log(𝑑))

Slogan “Isogenies of smooth degree are easy to compute”

Caution 𝐴𝑖 generic Abelian Variety (not necessarily 𝐸″
1 ×⋯×𝐸″

𝑛)

Evaluating 𝜑𝑖 requires heavy machinery: Mumford’s Theta Coordinates
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Going into higher dimensions: Kani’s Lemma

Lemma (Kani)

From a commuting square of isogenies between elliptic curves
𝐸1 𝐸3

𝐸4 𝐸2

𝑔1

ℎ1 𝑔2

ℎ2

𝑑1 = deg(𝑔1) = deg(ℎ2)
𝑑2 = deg(ℎ1) = deg(𝑔2)

we get the Kani isogeny

𝐾 = (
𝑔1 �̃�2
−ℎ1 ℎ̃2

) ∶ 𝐸1 ×𝐸2 −→ 𝐸3 ×𝐸4

of degree
deg(𝐾) = 𝑑1 + 𝑑2
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Interpretation Kani’s Lemma
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Clapoti [PR23]

Recall

(i) End(𝐸) ≅ 𝒪 ⊆ ℚ(√𝐷)

(ii) 𝐼 ⊆ 𝒪 ideal ⇝ 𝐼∶ 𝐸 −→ 𝐸𝐼 isogeny

(iii) [𝐼 ] ⋅ [𝐸] −→ [𝐸𝐼] is a group action

[𝐼 ] ⋅ ([𝐽 ] ⋅ [𝐸]) = [𝐼 ][𝐽 ] ⋅ [𝐸] = [𝐼𝐽 ] ⋅ [𝐸] = [𝐽𝐼 ] ⋅ [𝐸] = [𝐽 ][𝐼 ] ⋅ [𝐸] = [𝐽 ] ⋅ ([𝐼 ] ⋅ [𝐸])

in a diagram

[𝐸] [𝐸𝐼]

[𝐸𝐽] [𝐸𝐼𝐽]

[𝐼]

[𝐽] [𝐽]

[𝐼]

𝐸 𝐸𝐼

𝐸𝐽 𝐸 ′ ≅ 𝐸𝐼𝐽

𝐼

𝐽 𝐽

𝐼
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Clapoti [PR23]

Recall [𝐼 ]−1 = [ 𝐼 ].

So if [𝐽 ] = [𝐼 ] then [𝐽] = [𝐽 ]−1 = [𝐼 ]−1
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(i) Square commutes

(ii) Horizontal degree deg(𝐼)

(iii) Vertical degree deg(𝐽)= deg(𝐽)

Conclusion This is a Kani-square!

Kani-map 𝐾 has degree 𝑁 = deg(𝐼) + deg(𝐽)
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Problem 𝑁 = deg(𝐼) + deg(𝐽) might not be smooth

Idea

𝛼, 𝛽 ∈ 𝒪 ≅ End(𝐸)

𝐸 𝐸 𝐸𝐼

𝐸 𝐸 𝐸𝐼
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𝛼 𝐼

Again a Kani-square!

Induced Kani-map degree 𝑁 = deg(𝛼𝐼) + deg(𝛽𝐽) = deg(𝛼)deg(𝐼) + deg(𝛽)deg(𝐽)

Slogan “Composing with endomorphisms gives us wiggle room”
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Extend this idea

Idea Endomorphism 𝐸2 −→ 𝐸2

𝛼 = (
𝑎1 𝑎2
−𝑎2 𝑎1

) ∶ 𝐸2 −→ 𝐸2 𝑎1, 𝑎2 ∈ ℤ

has
deg(𝛼) = 𝑎2

1 + 𝑎2
2
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Clapoti [PR23]

Extend this idea

Idea Endomorphism 𝐸4 −→ 𝐸4

𝛼 =

⎛
⎜⎜⎜⎜⎜
⎝

𝑎1 𝑎2 𝑎3 𝑎4
−𝑎2 𝑎1 𝑎4 −𝑎3
−𝑎3 −𝑎4 𝑎1 𝑎2
−𝑎4 𝑎3 −𝑎2 𝑎1

⎞
⎟⎟⎟⎟⎟
⎠

∶ 𝐸4 −→ 𝐸4 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℤ

has
deg(𝛼) = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4

Theorem (Jacobi) Every positive integer is the sum of four squares
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Clapoti [PR23]

Conclusion For any smooth 𝑁 and ideals 𝐼 , 𝐽 find 𝛼, 𝛽 ∈ Mat4×4(ℤ) so that

𝑁 = deg(𝛼)deg(𝐼) + deg(𝛽)deg(𝐽)

Then get diagram

𝐸4 𝐸4 𝐸4
𝐼

𝐸4 𝐸4 𝐸4
𝐼

𝐸4
𝐽 𝐸4

𝐽 𝐸4

𝛼

𝛽

𝐼(4)

𝛽

𝐽
(4)

𝐼(4)

𝐽
(4)

𝐽
(4)

𝛼 𝐼(4)

where 𝐼 (4) =

⎛
⎜⎜⎜⎜⎜
⎝

𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎞
⎟⎟⎟⎟⎟
⎠

∶ 𝐸4 −→ 𝐸4
𝐼

Again a Kani-square!

Induced Kani-map has degree 𝑁 = deg(𝛼)deg(𝐼) + deg(𝛽)deg(𝐽) smooth!
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Clapoti Summary

Input: Ideal class [𝐻 ] ∈ Cl(𝒪), Curve class [𝐸] ∈ Ell(𝒪)

Output: [𝐸𝐻]

1. Find 𝐼 , 𝐽 ⊆ 𝒪 such that: (i) [𝐼 ] = [𝐽 ] = [𝐻]

(ii) deg(𝐼) prime to deg(𝐽)

2. Find 𝑎, 𝑏 so that 𝑁 = 𝑎deg(𝐼) + 𝑏deg(𝐽) is smooth

3. Compute 𝑎1, 𝑎2, 𝑎3, 𝑎4 such that 𝑎 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 (same for 𝑏)

4. Write down the matrices 𝛼, 𝛽

5. Construct 𝐾∶ 𝐸(4) ×𝐸(4) −→ 𝐸(4)
𝐼 ×𝐸(4)

𝐽 from Kani-square

6. Compute 𝐾 to recover equations for 𝐸(4)
𝐼 ×𝐸(4)

𝐽 ⇝ get equation for 𝐸𝐼 ≅ 𝐸𝐻

7. Return [𝐸𝐻]

Fact Polynomial time in |Cl(𝒪)|, no pre-computation!
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2. Find 𝑎, 𝑏 so that 𝑁 = 𝑎deg(𝐼) + 𝑏deg(𝐽) is smooth

3. Compute 𝑎1, 𝑎2, 𝑎3, 𝑎4 such that 𝑎 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 (same for 𝑏)

4. Write down the matrices 𝛼, 𝛽

5. Construct 𝐾∶ 𝐸(4) ×𝐸(4) −→ 𝐸(4)
𝐼 ×𝐸(4)

𝐽 from Kani-square

6. Compute 𝐾 to recover equations for 𝐸(4)
𝐼 ×𝐸(4)

𝐽 ⇝ get equation for 𝐸𝐼 ≅ 𝐸𝐻

7. Return [𝐸𝐻]

Fact Polynomial time in |Cl(𝒪)|, no pre-computation!
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Comparison of dimensions

Method Dimension
Direct evaluation Only if deg(𝐼) is smooth 1
Use endomorphisms of 𝐸 𝐾 = 𝐸 × 𝐸 −→ 𝐸𝐼 ×𝐸𝐽 2
Use endomorphisms of 𝐸2 𝐾 = 𝐸2 ×𝐸2 −→ 𝐸2

𝐼 ×𝐸2
𝐽 4

Use endomorphisms of 𝐸4 𝐾 = 𝐸4 ×𝐸4 −→ 𝐸4
𝐼 ×𝐸4

𝐽 8

𝐸 𝐸𝐼
𝐼

𝐸 𝐸𝐼

𝐸𝐽 𝐸

𝛼𝐼

𝛽𝐽 𝛽𝐽

𝛼𝐼

𝐸2 𝐸2
𝐼

𝐸2
𝐽 𝐸2

𝛼𝐼(2)

𝛽𝐽(2) 𝛽𝐽(2)

𝛼𝐼(2)

𝐸4 𝐸4
𝐼

𝐸4
𝐽 𝐸4

𝛼𝐼(4)

𝛽𝐽(4) 𝛽𝐽(4)

𝛼𝐼(4)
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Computing higher-dimensional isogenies in practice

Recall Factoring isogenies

𝐸1 ×⋯×𝐸𝑛 𝐸 ′
1 ×⋯×𝐸 ′

𝑛

𝐴1 ⋯ 𝐴𝑚−1

𝜑

𝜑1 𝜑2 𝜑𝑚−1
𝜑𝑚

Mathematically Computing 𝜑𝑖 requires time exponential in 𝑛

Practically Right now, only have implementation of
𝜑∶ 𝐸1 ×𝐸2 −→ 𝐸 ′

1 ×𝐸 ′
2 deg(𝜑) = 2𝑚

due to [DMPR23]

Caveat This 2d-library requires very special group structure on 𝐸
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Ordinary curves with special group structure

Folklore CM Method

Naïve Sage implementation

ℤ/2512ℤ × ℤ/2512ℤ ⊆ 𝐸(𝐹𝑞) in ∼ 30 minutes, |𝐸(𝐹𝑞)| ∼ 1024 bits

ℤ/21024ℤ × ℤ/21024ℤ ⊆ 𝐸(𝐹𝑞) in ∼ 28 hours, |𝐸(𝐹𝑞)| ∼ 2048 bits

Limitation

Only works for small class-groups

Best method [Sut12]
𝑂(|√Cl(𝒪)| log(|√Cl(𝒪)|))

Does not scale
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Ordinary curves with special group structure: Larger Class Group

Idea
Walk down the ℓ-isogeny volcano

Start: End(𝐸) ≅ 𝒪

After 𝑛 ℓ-steps: End(𝐸ℓ𝑛) ≅ 𝒪ℓ𝑛 ⊆ 𝒪
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|Cl(𝒪ℓ𝑛)| = |Cl(𝒪)| ℓ𝑛(1 − ((

ℓ
𝐷
))

1
ℓ
) ∼ ℓ𝑛

Note This is not secure! [DDF21]
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Clapoti: In two dimensions on ordinary curves

Find ordinary 𝐸 using CM Method and volcano walking

Input: Ideal class [𝐻 ] ∈ Cl(𝒪), Curve class [𝐸] ∈ Ell(𝒪)

Output: [𝐸𝐻]

1. Find 𝐼 , 𝐽 ⊆ 𝒪 such that

(i) [𝐼 ] = [𝐽 ] = [𝐻]
(ii) deg(𝐼) prime to deg(𝐽) = deg( 𝐽)
(iii) there exist endomorphisms 𝛼, 𝛽 ∈ 𝒪 so that

deg(𝛼)deg(𝐼) + deg(𝛽)deg(𝐽) = 𝑁 = 2𝑛

2. Compute kernel of 𝐾. Depends on 𝛼, 𝛽, 𝐼𝐽

3. Pass ker(𝐾) to the 2d-library [DMPR23] to obtain an equation for 𝐸𝐼
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Solving degree equations

1.(iii) Finding endomorphisms 𝛼, 𝛽 ∈ 𝒪 so that
𝑁 = deg(𝛼)deg(𝐼) + deg(𝛽)deg(𝐽) = 2𝑛

Lemma 𝛼 = 𝑥 + 𝑦𝜎 ∈ 𝒪 = ℤ+ 𝜎ℤ

deg(𝛼) = 𝑥2 + 𝐴𝜎𝑥𝑦 + 𝐵𝜎𝑦2 𝐴𝜎, 𝐵𝜎 ∈ ℤ 𝐴𝜎, 𝐵𝜎 ∼ √|Cl(𝒪)|

Case (𝑦 = 0) we can only obtain squares

Case (𝑦 ≠ 0) numbers represented by deg(𝛼) explode with |Cl(𝒪)|
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Case (𝑦 = 0) we can only obtain squares

Case (𝑦 ≠ 0) numbers represented by deg(𝛼) explode with |Cl(𝒪)|
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Calling the 2-dimensional isogeny library

𝐸1 ×⋯×𝐸𝑛 𝐸 ′
1 ×⋯×𝐸 ′

𝑛

𝐸″
1 ×⋯𝐸″

𝑛 ⋯ 𝐴𝑚−1

𝜑

𝜑1 𝜑2 𝜑𝑚−1
𝜑𝑚
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Conclusion

It appears efficient isogeny class-group evaluation on ordinary elliptic curves is
infeasible with current technology

Nevertheless …

Implementations

(i) CM Method

(ii) Ideals of endomorphism rings + rudimentary class group computation ∼ 213

(iii) Finding matching endomorphisms ∼ 210

(iv) Translation from endomorphisms to isogenies

(v) Computing the Kani-kernel
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Outlook

Outlook

Curve finding

Difficult problem

Removing the requirement of special group structure

Pair finding

More precise lattice sampling techniques (𝛼 in ℤ + 𝜎ℤ)

Better 2-dimensional heuristics a la SQISign-2D-West [BDDF+24]

Higher-dimensional isogenies

Higher higher-dimensional isogeny-libraries
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Thank you!
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