Computing the Isogeny Class-Group Action on Ordinary Elliptic Curves by going into higher dimensions

Ryan Rueger

rueg.re/icga

July 2024

・ロト <
一 ト <
三 ト <
三 ト <
三 ・ つへで 0/38
</p>

Elliptic Curves and Isogenies

Isogeny Class-Group Action

Higher Dimensional Methods

Challenges from ordinary elliptic curves

Partial Results and Remaining Problems

<ロ> < 母 > < 臣 > < 臣 > 臣 の < ⊙ ()/38

Motivation Diffie-Hellman key exchange is not post-quantum

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

(ii) Publish g_0^a, g_0^b

Motivation Diffie-Hellman key exchange is not post-quantum

<□ ▶ < □ ▶ < 壹 ▶ < 亘 ▶ < 亘 り Q @ 1/38

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

- (ii) Publish g_0^a, g_0^b
- (iii) Recover $k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

(ii) Publish g_0^a, g_0^b

(iii) Recover
$$k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^{e}$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

(ii) Publish g_0^a, g_0^b

(iii) Recover
$$k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^{e}$

Recall (Group action) H a group, X a set

$$H \times X \to X \qquad (h, x) \mapsto h \cdot x$$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

(i) Sample
$$a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} - \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$$

(ii) Publish g_0^a, g_0^b

(iii) Recover
$$k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^e$ Recall (Group action) H a group, X a set

$$H \times X \to X$$
 $(h, x) \mapsto h \cdot x$

(i) $1_H \cdot x = x$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

- (i) Sample $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} \{0\} \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$
- (ii) Publish g_0^a, g_0^b
- (iii) Recover $k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^e$ Recall (Group action) H a group, X a set

$$H \times X \to X$$
 $(h, x) \mapsto h \cdot x$

◆□ → ◆□ → ◆ ミ → ◆ ミ ・ ク へ · 1/38

(i) $1_H \cdot x = x$ (Exponentiation: $g^1 = g$)

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

- (i) Sample $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} \{0\} \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$
- (ii) Publish g_0^a, g_0^b
- (iii) Recover $k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^{e}$ Recall (Group action) H a group, X a set

・ロト <
一 > <
三 > <
三 > 、
三 > の へ の 1/38

$$\begin{array}{ll} H\times X\to X & (h,x)\mapsto h\cdot x\\ (\mathrm{i}) \ 1_{H}\cdot x=x & (\text{Exponentiation: } g^{1}=g)\\ (\mathrm{ii}) \ h_{2}\cdot (h_{1}\cdot x)=(h_{2}h_{1})\cdot x\end{array}$$

Motivation Diffie-Hellman key exchange is not post-quantum

Closer Look $G = \langle g_0 \rangle$ order p

- (i) Sample $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/p\mathbb{Z} \{0\} \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$
- (ii) Publish g_0^a, g_0^b
- (iii) Recover $k = g_0^{ab} = (g_0^a)^b = (g_0^b)^a$

Insight This exponentiation is a group action! $(\mathbb{Z}/p\mathbb{Z})^{\times} \times G \to G; (e,g) \mapsto g^{e}$ Recall (Group action) H a group, X a set

$$H \times X \to X$$
 $(h, x) \mapsto h \cdot x$

(i) $1_H \cdot x = x$ (Exponentiation: $g^1 = g$) (ii) $h_2 \cdot (h_1 \cdot x) = (h_2 h_1) \cdot x$ (Exponentiation: $(g^a)^b = g^{ab}$)

Rephrase NIKE from group action

Setup: $H \times X \rightarrow X$ group action, H commutative, $x_0 \in X$

Rephrase NIKE from group action

Setup: $H \times X \rightarrow X$ group action, H commutative, $x_0 \in X$

(i) Sample $a, b \stackrel{\$}{\leftarrow} H$

Rephrase NIKE from group action

Setup: $H \times X \rightarrow X$ group action, H commutative, $x_0 \in X$

- (i) Sample $a, b \stackrel{\$}{\leftarrow} H$
- (ii) Publish $a \cdot x_0, b \cdot x_0$

Rephrase NIKE from group action

Setup: $H \times X \rightarrow X$ group action, H commutative, $x_0 \in X$

- (i) Sample $a, b \stackrel{\$}{\leftarrow} H$
- (ii) Publish $a \cdot x_0, b \cdot x_0$
- (iii) Recover $\mathbf{k} = (\mathbf{a}\mathbf{b}) \cdot \mathbf{x}_0 = \mathbf{b} \cdot (\mathbf{a} \cdot \mathbf{x}_0) = \mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{x}_0)$

Rephrase NIKE from group action

Setup: $H \times X \rightarrow X$ group action, H commutative, $x_0 \in X$

- (i) Sample $a, b \stackrel{\$}{\leftarrow} H$
- (ii) Publish $a \cdot x_0, b \cdot x_0$
- (iii) Recover $k = (ab) \cdot x_0 = b \cdot (a \cdot x_0) = a \cdot (b \cdot x_0)$

Cryptographic Group Action if it is hard to If it is hard to

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 2/38

(i) ("DLP") Recover a from $(x, a \cdot x)$

Rephrase NIKE from group action

Setup: $H \times X \to X$ group action, H commutative, $x_0 \in X$

- (i) Sample $a, b \stackrel{\$}{\leftarrow} H$
- (ii) Publish $a \cdot x_0, b \cdot x_0$
- (iii) Recover $k = (ab) \cdot x_0 = b \cdot (a \cdot x_0) = a \cdot (b \cdot x_0)$

Cryptographic Group Action if it is hard to If it is hard to

<□ > < @ > < E > < E > E の < C 2/38

- (i) ("DLP") Recover *a* from $(x, a \cdot x)$
- (ii) ("CDHP") Recover $k = (ab) \cdot x$ from $(x, a \cdot x, b \cdot x)$

Rephrase NIKE from group action

Setup: $H \times X \to X$ group action, H commutative, $x_0 \in X$

- (i) Sample $a, b \stackrel{\$}{\leftarrow} H$
- (ii) Publish $a \cdot x_0, b \cdot x_0$
- (iii) Recover $k = (ab) \cdot x_0 = b \cdot (a \cdot x_0) = a \cdot (b \cdot x_0)$

Cryptographic Group Action if it is hard to If it is hard to

- (i) ("DLP") Recover *a* from $(x, a \cdot x)$
- (ii) ("CDHP") Recover $k = (ab) \cdot x$ from $(x, a \cdot x, b \cdot x)$

Note These are equivalently hard problems on a quantum computer [GPSV18, MZ22, GLM24]

Conclusion CGAs generalise exponentiation and we get a NIKE

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM⁺18]
Signatures [DFG18, BKV19]
Threshold Signatures [DFM19]
Oblivious Transfer [DdSGOPS18]
+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT, Naor-Reingold PRF) [ADFMP20]

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM⁺18]

Signatures [DFG18, BKV19]

Threshold Signatures [DFM19]

Oblivious Transfer [DdSGOPS18]

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT, Naor-Reingold PRF) [ADFMP20]

Since: e.g. Oblivious Pseudorandom Functions [DdSGP23]

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM⁺18]

Signatures [DFG18, BKV19]

Threshold Signatures [DFM19]

Oblivious Transfer [DdSGOPS18]

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT, Naor-Reingold PRF) [ADFMP20]

Since: e.g. Oblivious Pseudorandom Functions [DdSGP23]

Naturally arising CGA from isogenies: Isogeny Class-Group Action [Cou97, RS06]

 $H \times X \rightarrow X$, H commutative

<□ > < @ > < \overline > \overline \overline

Classical [GHS01] Complexity $O\left(\sqrt{|H|}\right)$ $H \times X \rightarrow X$, H commutative

Classical [GHS01] Complexity $O\left(\sqrt{|H|}\right)$

Quantum [Kup10, CJS10] Complexity $O\left(\exp\left(\sqrt{\log(|H|)}\right)\right)$

Elliptic curves and Isogenies

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algebraic

$$y^2 = x^3 + ax + b$$

Algebraic

 $y^2 = x^3 + ax + b$

Slogan "Described by polynomials"

Algebraic

 $y^2 = x^3 + ax + b$

Slogan "Described by polynomials"

Groups

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 三 の へ で 5/38

Isogenies are morphisms of algebraic groups

Isogenies are morphisms of algebraic groups

Slogan "Isogenies preserve geometric and group structure"

Isogenies are morphisms of algebraic groups

Slogan "Isogenies preserve geometric and group structure"

Example Scalar multiplication

$$[N]_E \colon E \to E \qquad P \mapsto NP = \underbrace{P + \dots + P}_{N \text{ times}}$$

・ロト <
一 ト <
三 ト <
三 ト <
三 ・ つへで 6/38
</p>

Elliptic curves and Isogenies

Lemma Every isogeny $\varphi \colon E \to E'$ has a reverse $\widetilde{\varphi} \colon E' \to E$
Lemma Every isogeny $\varphi: E \to E'$ has a reverse $\widetilde{\varphi}: E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Lemma Every isogeny $\varphi: E \to E'$ has a reverse $\widetilde{\varphi}: E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma Every isogeny $\varphi \colon E \to E'$ has a reverse $\widetilde{\varphi} \colon E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$

Lemma Every isogeny $\varphi \colon E \to E'$ has a reverse $\widetilde{\varphi} \colon E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma $\deg(\varphi\psi)=\deg(\varphi)\deg(\psi)~~\mathrm{and}~\mathrm{when}~\deg(\varphi)=p_m\cdots p_1$

Lemma Every isogeny $\varphi \colon E \to E'$ has a reverse $\widetilde{\varphi} \colon E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma $\deg(\varphi\psi)=\deg(\varphi)\deg(\psi)~~\mathrm{and}~\mathrm{when}~\deg(\varphi)=p_m\cdots p_1$

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Lemma Every isogeny $\varphi \colon E \to E'$ has a reverse $\widetilde{\varphi} \colon E' \to E$

$$\widetilde{\varphi} \circ \varphi = [d]_E \qquad \varphi \circ \widetilde{\varphi} = [d]_{E'} \qquad d = \deg(\varphi)$$

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma $\deg(\varphi\psi)=\deg(\varphi)\deg(\psi)~~\mathrm{and}~\mathrm{when}~\deg(\varphi)=p_m\cdots p_1$

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Slogan "Isogenies of smooth degree are easy to compute"

Towards an action: The Endomorphism Ring

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Definition Endomorphism Ring

 $\operatorname{End}(E) = \{ \varphi \colon E \to E \mid \varphi \text{ an isogeny} \}$

Definition Endomorphism Ring

 $\operatorname{End}(E) = \{\varphi \colon E \to E \mid \varphi \text{ an isogeny}\}\$

$$\begin{aligned} (\varphi + \omega)(P) &\stackrel{\text{\tiny def.}}{=} \varphi(P) + \omega(P) \\ (\varphi \omega)(P) &\stackrel{\text{\tiny def.}}{=} (\varphi \circ \omega)(P) \end{aligned}$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Definition Endomorphism Ring

 $\operatorname{End}(E) = \{\varphi \colon E \to E \mid \varphi \text{ an isogeny}\}\$

$$\begin{aligned} (\varphi + \omega)(P) &\stackrel{\text{\tiny def.}}{=} \varphi(P) + \omega(P) \\ (\varphi \omega)(P) &\stackrel{\text{\tiny def.}}{=} (\varphi \circ \omega)(P) \end{aligned}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < e 8/38

Example Scalar multiplication $[N]_E$ is an endomorphism $E \to E$

Towards an action: Classifying the Endomorphism Rings

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ 差 りへで 9/38

(i) Z

< □ ▶ < 圕 ▶ < 壹 ▶ < 亘 ▶ Ξ の Q @ 9/38

Theorem (Deuring) $\operatorname{End}(E)$ isomorphic (as ring) to

(i) Z

(ii) Rank-2 lattice $\mathbb{Z} + \sigma \mathbb{Z} \subseteq$ imaginary quadratic field

(i) Z

(ii) Rank-2 lattice $\mathbb{Z} + \sigma \mathbb{Z} \subseteq$ imaginary quadratic field Commutative

(i) Z

 (ii) Rank-2 lattice Z + σZ ⊆ imaginary quadratic field Commutative Ordinary

(i) Z

- (ii) Rank-2 lattice Z + σZ ⊆ imaginary quadratic field Commutative Ordinary
- (iv) Rank-4 lattice $\mathbb{Z} + \sigma \mathbb{Z} + \omega \mathbb{Z} + \zeta \mathbb{Z} \subseteq$ quaternion algebra

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(i) Z

- (ii) Rank-2 lattice Z + σZ ⊆ imaginary quadratic field Commutative Ordinary
- (iv) Rank-4 lattice $\mathbb{Z} + \sigma \mathbb{Z} + \omega \mathbb{Z} + \zeta \mathbb{Z} \subseteq$ quaternion algebra Non-commutative

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ⊙ 9/38

(i) Z

 (ii) Rank-2 lattice Z + σZ ⊆ imaginary quadratic field Commutative

Ordinary

(iv) Rank-4 lattice $\mathbb{Z} + \sigma \mathbb{Z} + \omega \mathbb{Z} + \zeta \mathbb{Z} \subseteq$ quaternion algebra Non-commutative Supersingular

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(i) Z

 (ii) Rank-2 lattice Z + σZ ⊆ imaginary quadratic field Commutative

Ordinary

(iv) Rank-4 lattice $\mathbb{Z} + \sigma \mathbb{Z} + \omega \mathbb{Z} + \zeta \mathbb{Z} \subseteq$ quaternion algebra Non-commutative Supersingular

We are interested in the ordinary case

Towards an action: Visualising the Endomorphism Ring

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q @ 10/38

Towards an action: Visualising the Endomorphism Ring

Imaginary Quadratic Fields

Imaginary Quadratic Fields

 $\mathbb{Q}(\sqrt{D}) \subseteq \mathbb{C} \quad D < 0 \in \mathbb{Z}$

Towards an action: Visualising the Endomorphism Ring

Imaginary Quadratic Fields $\mathbb{Q}(\sqrt{D}) \subseteq \mathbb{C} \quad D < 0 \in \mathbb{Z}$ $\operatorname{End}(E) \cong 1\mathbb{Z} + \sigma\mathbb{Z}$

Towards an action: Visualising the Endomorphism Ring

Imaginary Quadratic Fields $\mathbb{Q}(\sqrt{D}) \subseteq \mathbb{C} \quad D < 0 \in \mathbb{Z}$ $\operatorname{End}(E) \cong 1\mathbb{Z} + \sigma\mathbb{Z}$ Lattice + Ring = Order $\rightsquigarrow \operatorname{End}(E) \cong \mathcal{O}$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ℃ 11/38

Correspondence Ideal $I \subseteq \mathcal{O} \cong \operatorname{End}(E) \rightsquigarrow$ Isogeny $I: E \to E_I$

Correspondence Ideal $I \subseteq \mathcal{O} \cong \operatorname{End}(E) \rightsquigarrow$ Isogeny $I: E \to E_I$

Definition Ideal Class Group and its Action

$$\operatorname{Cl}(\mathcal{O}) = \left\{ \operatorname{Classes} \left[I \right] \text{ of ideals } I \subseteq \mathcal{O} \quad \text{s.t.} \quad \begin{array}{c} \text{(i)} \operatorname{End}(E_I) \cong \operatorname{End}(E) \cong \mathcal{O} \\ \text{(ii)} \left[I \right] = \left[J \right] \iff E_I \cong E_J \end{array} \right\}$$

Correspondence Ideal $I \subseteq \mathcal{O} \cong \operatorname{End}(E) \rightsquigarrow$ Isogeny $I: E \to E_I$

Definition Ideal Class Group and its Action

$$\operatorname{Cl}(\mathcal{O}) = \left\{ \operatorname{Classes} \left[I \right] \text{ of ideals } I \subseteq \mathcal{O} \quad \text{s.t.} \quad \begin{array}{c} \text{(i)} \quad \operatorname{End}(E_I) \cong \operatorname{End}(E) \cong \mathcal{O} \\ \text{(ii)} \quad \left[I \right] = \left[J \right] \iff E_I \cong E_J \end{array} \right\}$$

Group law: $[I][J] = [IJ], [\mathcal{O}]$ is the neutral element and $[I]^{-1} = [\overline{I}]$

Correspondence Ideal $I \subseteq \mathcal{O} \cong \operatorname{End}(E) \rightsquigarrow$ Isogeny $I: E \to E_I$

Definition Ideal Class Group and its Action

$$\operatorname{Cl}(\mathcal{O}) = \left\{ \operatorname{Classes} \left[I \right] \text{ of ideals } I \subseteq \mathcal{O} \quad \text{s.t.} \quad \begin{array}{c} \text{(i) } \operatorname{End}(E_I) \cong \operatorname{End}(E) \cong \mathcal{O} \\ \text{(ii) } \left[I \right] = \left[J \right] \iff E_I \cong E_J \end{array} \right\}$$

Group law: [I][J] = [IJ], $[\mathcal{O}]$ is the neutral element and $[I]^{-1} = [\overline{I}]$ Acts on

 $\operatorname{Ell}(\mathcal{O}) = \{\operatorname{Isomorphism \ classes \ } [E] \text{ of elliptic \ curves \ } E \text{ s.t. \ } \operatorname{End}(E) \cong \mathcal{O}\}$

Correspondence Ideal $I \subseteq \mathcal{O} \cong \operatorname{End}(E) \rightsquigarrow$ Isogeny $I: E \to E_I$

Definition Ideal Class Group and its Action

$$\operatorname{Cl}(\mathcal{O}) = \left\{ \operatorname{Classes} \left[I \right] \text{ of ideals } I \subseteq \mathcal{O} \quad \text{s.t.} \quad \begin{array}{c} \text{(i) } \operatorname{End}(E_I) \cong \operatorname{End}(E) \cong \mathcal{O} \\ \text{(ii) } \left[I \right] = \left[J \right] \iff E_I \cong E_J \end{array} \right\}$$

Group law: [I][J] = [IJ], $[\mathcal{O}]$ is the neutral element and $[I]^{-1} = [\overline{I}]$ Acts on

 $\mathrm{Ell}(\mathcal{O}) = \{ \mathrm{Isomorphism\ classes\ } [E] \text{ of elliptic\ curves\ } E \text{ s.t.\ } \mathrm{End}(E) \cong \mathcal{O} \}$ via

$$\operatorname{Cl}(\mathcal{O}) \times \operatorname{Ell}(\mathcal{O}) \to \operatorname{Ell}(\mathcal{O}) \qquad ([I], [E]) \mapsto [I] \cdot [E] = [E_I]$$

Computing this isogeny class-group action

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ⑦ Q @ 12/38

Computing this isogeny class-group action

Naïve

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ⑦ Q @ 12/38

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ℃ 12/38

Naïve

Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$

Naïve

Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$

(i) Choose representative $J \subseteq \mathcal{O}$ so that [J] = [I]

<□ > < @ > < E > < E > E の < C 12/38

Naïve

Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$

(i) Choose representative $J \subseteq \mathcal{O}$ so that [J] = [I]

<□ > < @ > < E > < E > E の < ○ 12/38

(ii) Construct isogeny $J: E \to E_J$

Naïve

- Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$
- (i) Choose representative $J \subseteq \mathcal{O}$ so that [J] = [I]
- (ii) Construct isogeny $J: E \to E_J$
- (iii) Evaluate the isogeny $J: E \to E_J$ to obtain equation for E_J
Naïve

- Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$
- (i) Choose representative $J \subseteq \mathcal{O}$ so that [J] = [I]
- (ii) Construct isogeny $J: E \to E_J$
- (iii) Evaluate the isogeny $J: E \to E_J$ to obtain equation for E_J

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 12/38

(iv) Return $[E_J] = [E_I]$

Naïve

Input: $[I] \in Cl(\mathcal{O})$ and $[E] \in Ell(\mathcal{O})$ Output: $[I] \cdot [E] = [E_I]$

- (i) Choose representative $J \subseteq \mathcal{O}$ so that [J] = [I]
- (ii) Construct isogeny $J: E \to E_J$
- (iii) Evaluate the isogeny $J: E \to E_J$ to obtain equation for E_J

(iv) Return $[E_J] = [E_I]$

Problem $J: E \to E_J$ might have large non-smooth degree

Computing this isogeny class-group action

<□ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q @ 14/38

Recall Elliptic curves are algebraic groups

Recall Elliptic curves are algebraic groups $\dots E \times E$ also group

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic

...but $E \times E$ is not an Elliptic curve

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic $...but E \times E$ is not an Elliptic curve

Resolution

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic $...but E \times E$ is not an Elliptic curve

Resolution

Products of elliptic curves are Abelian varieties

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic $...but E \times E$ is not an Elliptic curve

< □ > < @ > < E > < E > E の < ○ 16/38

Resolution

Products of elliptic curves are Abelian varieties

Isogenies between Abelian varieties are morphisms of algebraic groups

Recall Elliptic curves are algebraic groups $...E \times E$ also group $...E \times E$ also algebraic $...but E \times E$ is not an Elliptic curve

Resolution

Products of elliptic curves are Abelian varieties

Isogenies between Abelian varieties are morphisms of algebraic groups

Example Scalar multiplication $[N]_A: A \to A; P \mapsto NP = P + \dots + P$

For all isogenies

$$\varphi \colon E_1 \times \cdots \times E_n \to E_1' \times \cdots \times E_n'$$

the reverse map exists

$$\widetilde{\varphi}: E_1' \times \cdots \times E_n' \to E_1 \times \cdots \times E_n$$

For all isogenies

$$\varphi \colon E_1 \times \cdots \times E_n \to E_1' \times \cdots \times E_n'$$

the reverse map exists

$$\widetilde{\varphi}: E_1' \times \cdots \times E_n' \to E_1 \times \cdots \times E_n$$

Caution However it must not necessarily satisfy

$$\widetilde{arphi}\circarphi=[d]_{E_1 imes\dots imes E_n}\qquad arphi\circ\widetilde{arphi}=[d]_{E_1' imes\dots imes E_n'}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 17/38

For all isogenies

$$\varphi \colon E_1 \times \cdots \times E_n \to E_1' \times \cdots \times E_n'$$

the reverse map exists

$$\widetilde{\varphi}: E_1' \times \cdots \times E_n' \to E_1 \times \cdots \times E_n$$

Caution However it must not necessarily satisfy

$$\widetilde{arphi} \circ arphi = [d]_{E_1 imes \dots imes E_n} \qquad arphi \circ \widetilde{arphi} = [d]_{E_1' imes \dots imes E_n'}$$

<□ > < @ > < E > < E > E の < 0 17/38

When it *does*, we say that φ has *degree* d

For all isogenies

$$\varphi \colon E_1 \times \cdots \times E_n \to E_1' \times \cdots \times E_n'$$

the reverse map exists

$$\widetilde{\varphi}: E_1' \times \cdots \times E_n' \to E_1 \times \cdots \times E_n$$

Caution However it must not necessarily satisfy

$$\widetilde{arphi} \circ arphi = [d]_{E_1 imes \dots imes E_n} \qquad arphi \circ \widetilde{arphi} = [d]_{E_1' imes \dots imes E_n'}$$

When it *does*, we say that φ has *degree* d

Naïve Evaluating an isogeny of degree d costs O(d)

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$

Lemma $\deg(\varphi\psi)=\deg(\varphi)\deg(\psi)~~\mathrm{and}~\mathrm{when}~\deg(\varphi)=p_m\cdots p_1$

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$ and when $\deg(\varphi) = p_m \cdots p_1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$ and when $\deg(\varphi) = p_m \cdots p_1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Slogan "Isogenies of smooth degree are easy to compute"

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$ and when $\deg(\varphi) = p_m \cdots p_1$

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Slogan "Isogenies of smooth degree are easy to compute"

Caution A_i generic Abelian Variety (not necessarily $E_1'' \times \cdots \times E_n''$)

Lemma $\deg(\varphi\psi) = \deg(\varphi) \deg(\psi)$ and when $\deg(\varphi) = p_m \cdots p_1$

Better If all $p_i \leq B$ cost of evaluating is $O(B\log(d))$

Slogan "Isogenies of smooth degree are easy to compute"

Caution A_i generic Abelian Variety (not necessarily $E''_1 \times \cdots \times E''_n$)

Evaluating φ_i requires heavy machinery: Mumford's Theta Coordinates

From a commuting square of isogenies between elliptic curves

$$\begin{array}{ccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ h_1 & \downarrow & \downarrow^{g_2} \\ E_4 & \stackrel{h_2}{\longrightarrow} & E_2 \end{array} \qquad \begin{array}{c} d_1 = \deg(g_1) = \deg(h_2) \\ d_2 = \deg(h_1) = \deg(g_2) \end{array}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · 𝔅 𝔅 19/38

From a commuting square of isogenies between elliptic curves

$$\begin{array}{ccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ \downarrow & & \downarrow \\ h_1 \\ \downarrow & & \downarrow \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} \qquad \begin{array}{c} d_1 = \deg(g_1) = \deg(h_2) \\ d_2 = \deg(h_1) = \deg(g_2) \end{array}$$

we get the Kani isogeny

$$K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ 19/38

From a commuting square of isogenies between elliptic curves

$$\begin{array}{ccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ \downarrow & & \downarrow \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} & d_1 = \deg(g_1) = \deg(h_2) \\ d_2 = \deg(h_1) = \deg(g_2) \end{array}$$

we get the Kani isogeny

$$K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

of degree

$$\deg(K) = d_1 + d_2$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ Q ⁽~ 19/38

From a commuting square of isogenies between powers of elliptic curves

$$\begin{array}{ccc} E_1^n & \stackrel{g_1}{\longrightarrow} & E_3^n \\ \downarrow & \downarrow & \downarrow \\ h_1 \downarrow & \downarrow & \downarrow \\ E_4^n & \stackrel{g_2}{\longrightarrow} & E_2^n \end{array} & d_1 = \deg(g_1) = \deg(h_2) \\ d_2 = \deg(h_1) = \deg(g_2) \end{array}$$

we get the Kani isogeny

$$K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1^n \times E_2^n \to E_3^n \times E_4^n$$

of degree

$$\deg(K) = d_1 + d_2$$

<□ > < @ > < E > < E > E の < ○ 19/38

From a commuting square of isogenies between general Abelian varieties

$$\begin{array}{ccc} A_1 & \stackrel{g_1}{\longrightarrow} & A_3 \\ \downarrow & & \downarrow^{g_2} \\ A_4 & \stackrel{h_2}{\longrightarrow} & A_2 \end{array} \qquad \begin{array}{c} d_1 = \deg(g_1) = \deg(h_2) \\ d_2 = \deg(h_1) = \deg(g_2) \end{array}$$

we get the Kani isogeny

$$K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : A_1 \times A_2 \to A_3 \times A_4$$

of degree

$$\deg(K) = d_1 + d_2$$

<□ > < @ > < E > < E > E の < ○ 19/38

Interpretation Kani's Lemma

$$\begin{array}{cccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ \downarrow & & \downarrow \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} & & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

<□▶ < @▶ < E▶ < E▶ E の Q @ 20/38

Interpretation Kani's Lemma

$$\begin{array}{cccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ h_1 & & \downarrow^{g_2} \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

Slogan "Isogenies of dimension 1 have been embedded into dimension 2"

Interpretation Kani's Lemma

$$\begin{array}{ccc} E_1 & \xrightarrow{g_1} & E_3 \\ \downarrow & & \downarrow g_2 \\ E_4 & \xrightarrow{h_2} & E_2 \end{array} & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

<□ > < @ > < E > < E > E の < ○ 20/38

Slogan "Isogenies of dimension 1 have been embedded into dimension 2" Idea $\deg(K) = d_1 + d_2$

If g_i, h_i so that $\deg(K) = d_1 + d_2 = \deg(g_1) + \deg(h_1)$ is smooth

Interpretation Kani's Lemma

$$\begin{array}{cccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ h_1 \downarrow & & \downarrow^{g_2} \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

<□ > < @ > < E > < E > E の < ○ 20/38

Slogan "Isogenies of dimension 1 have been embedded into dimension 2" Idea $\deg(K) = d_1 + d_2$ If g_i, h_i so that $\deg(K) = d_1 + d_2 = \deg(g_1) + \deg(h_1)$ is smooth

...we can evaluate K easily!

Interpretation Kani's Lemma

$$\begin{array}{cccc} E_1 & \xrightarrow{g_1} & E_3 \\ \downarrow & & \downarrow g_2 \\ E_4 & \xrightarrow{h_2} & E_2 \end{array} & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

Slogan "Isogenies of dimension 1 have been embedded into dimension 2" Idea $\deg(K) = d_1 + d_2$ If g_i, h_i so that $\deg(K) = d_1 + d_2 = \deg(g_1) + \deg(h_1)$ is smooth

 $u_1 = u_1 + u_2 = u_2$

 \dots we can evaluate K easily!

...then recover g_i, h_i by evaluating K

Interpretation Kani's Lemma

$$\begin{array}{cccc} E_1 & \stackrel{g_1}{\longrightarrow} & E_3 \\ h_1 \downarrow & & \downarrow^{g_2} \\ E_4 & \stackrel{g_2}{\longrightarrow} & E_2 \end{array} & & K = \begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} : E_1 \times E_2 \to E_3 \times E_4$$

Slogan "Isogenies of dimension 1 have been embedded into dimension 2" Idea $\deg(K) = d_1 + d_2$ If g_i, h_i so that $\deg(K) = d_1 + d_2 = \deg(g_1) + \deg(h_1)$ is smooth

...we can evaluate K easily!

...then recover q_i, h_i by evaluating K e.g.

$$\begin{pmatrix} g_1 & \widetilde{g_2} \\ -h_1 & \widetilde{h_2} \end{pmatrix} \begin{pmatrix} P \\ 0 \end{pmatrix} = \begin{pmatrix} g_1(P) \\ -h_1(P) \end{pmatrix} \quad \rightsquigarrow \quad g_1(P)$$

Clapoti [PR23]

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ^{21/38}

Clapoti [PR23]

Recall
Recall

(i) $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$

Recall

- (i) $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$
- (ii) $I \subseteq \mathcal{O}$ ideal $\rightsquigarrow I: E \to E_I$ isogeny

Recall

- (i) $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$
- (ii) $I \subseteq \mathcal{O}$ ideal $\rightsquigarrow I: E \to E_I$ isogeny
- (iii) $[I] \cdot [E] \rightarrow [E_I]$ is a group action

 $[I] \cdot ([J] \cdot [E]) = [I][J] \cdot [E] = [IJ] \cdot [E] = [JI] \cdot [E] = [J][I] \cdot [E] = [J] \cdot ([I] \cdot [E])$

Recall

- (i) $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$
- (ii) $I \subseteq \mathcal{O}$ ideal $\rightsquigarrow I: E \to E_I$ isogeny
- (iii) $[I] \cdot [E] \rightarrow [E_I]$ is a group action

$$[I] \cdot ([J] \cdot [E]) = [I][J] \cdot [E] = [IJ] \cdot [E] = [JI] \cdot [E] = [J][I] \cdot [E] = [J] \cdot ([I] \cdot [E])$$

in a diagram

$$\begin{array}{c} [E] & \stackrel{[I]}{\longrightarrow} & [E_I] \\ [J] & & \downarrow^{[J]} \\ [E_J] & \stackrel{[J]}{\longrightarrow} & [E_{IJ}] \end{array}$$

Recall

- (i) $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$
- (ii) $I \subseteq \mathcal{O}$ ideal $\rightsquigarrow I: E \to E_I$ isogeny
- (iii) $[I] \cdot [E] \rightarrow [E_I]$ is a group action
 - $[I] \cdot ([J] \cdot [E]) = [I][J] \cdot [E] = [IJ] \cdot [E] = [JI] \cdot [E] = [J][I] \cdot [E] = [J] \cdot ([I] \cdot [E])$

in a diagram

Recall $[I]^{-1} = [\overline{I}].$

Recall
$$[I]^{-1} = [\overline{I}]$$
. So if $[J] = [I]$ then $[\overline{J}] = [J]^{-1} = [I]^{-1}$

◆□ → < □ → < Ξ → < Ξ → Ξ の へ ⁰ 22/38

Recall $[I]^{-1} = [\overline{I}]$. So if [J] = [I] then $[\overline{J}] = [J]^{-1} = [I]^{-1}$

Recall $[I]^{-1} = [\overline{I}]$. So if [J] = [I] then $[\overline{J}] = [J]^{-1} = [I]^{-1}$

(i) Square commutes

- (i) Square commutes
- (ii) Horizontal degree deg(I)

- (i) Square commutes
- (ii) Horizontal degree deg(I)
- (iii) Vertical degree $deg(\overline{J})$

- (i) Square commutes
- (ii) Horizontal degree deg(I)
- (iii) Vertical degree $deg(\overline{J}) = deg(J)$

Recall
$$[I]^{-1} = [\overline{I}]$$
. So if $[J] = [I]$ then $[\overline{J}] = [J]^{-1} = [I]^{-1}$

- (i) Square commutes
- (ii) Horizontal degree deg(I)
- (iii) Vertical degree $deg(\overline{J}) = deg(J)$

Conclusion This is a Kani-square!

Recall
$$[I]^{-1} = [\overline{I}]$$
. So if $[J] = [I]$ then $[\overline{J}] = [J]^{-1} = [I]^{-1}$

- (i) Square commutes
- (ii) Horizontal degree deg(I)
- (iii) Vertical degree $\deg(\overline{J}) = \deg(J)$

Conclusion This is a Kani-square!

Kani-map K has degree $N = \deg(I) + \deg(J)$

Problem $N = \deg(I) + \deg(J)$ might not be smooth

Problem $N = \deg(I) + \deg(J)$ might not be smooth

Idea

 $\alpha,\beta\in\mathcal{O}\cong\operatorname{End}(E)$

Again a Kani-square!

Problem $N = \deg(I) + \deg(J)$ might not be smooth

Idea

 $\alpha, \beta \in \mathcal{O} \cong \operatorname{End}(E)$

Again a Kani-square!

Induced Kani-map degree $N = \deg(\alpha I) + \deg(\beta J) = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$

Problem $N = \deg(I) + \deg(J)$ might not be smooth

Idea

 $\alpha, \beta \in \mathcal{O} \cong \operatorname{End}(E)$

Again a Kani-square!

Induced Kani-map degree $N = \deg(\alpha I) + \deg(\beta J) = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$ Slogan "Composing with endomorphisms gives us wiggle room"

Extend this idea

Extend this idea

Idea Endomorphism $E^2 \rightarrow E^2$

$$lpha = egin{pmatrix} a_1 & a_2 \ -a_2 & a_1 \end{pmatrix} : E^2 o E^2 \qquad a_1, a_2 \in \mathbb{Z}$$

has

$$\deg(\alpha) = a_1^2 + a_2^2$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 24/38

Extend this idea

Idea Endomorphism $E^4 \to E^4$ $\alpha = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ -a_2 & a_1 & a_4 & -a_3 \\ -a_3 & -a_4 & a_1 & a_2 \\ -a_4 & a_3 & -a_2 & a_1 \end{pmatrix} : E^4 \to E^4 \qquad a_1, a_2, a_3, a_4 \in \mathbb{Z}$

has

$$\deg(\alpha) = a_1^2 + a_2^2 + a_3^2 + a_4^2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ 24/38

Extend this idea

Idea Endomorphism $E^4 \rightarrow E^4$

$$\alpha = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ -a_2 & a_1 & a_4 & -a_3 \\ -a_3 & -a_4 & a_1 & a_2 \\ -a_4 & a_3 & -a_2 & a_1 \end{pmatrix} : E^4 \to E^4 \qquad a_1, a_2, a_3, a_4 \in \mathbb{Z}$$

has

$$\deg(\alpha) = a_1^2 + a_2^2 + a_3^2 + a_4^2$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 24/38

Theorem (Jacobi) Every positive integer is the sum of four squares

Conclusion For any smooth N and ideals I, J find $\alpha, \beta \in Mat_{4\times 4}(\mathbb{Z})$ so that

 $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$

Conclusion For any smooth N and ideals I, J find $\alpha, \beta \in Mat_{4\times 4}(\mathbb{Z})$ so that

 $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$

Then get diagram

Conclusion For any smooth N and ideals I, J find $\alpha, \beta \in Mat_{4\times 4}(\mathbb{Z})$ so that

 $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$

Then get diagram

Again a Kani-square!

Conclusion For any smooth N and ideals I, J find $\alpha, \beta \in Mat_{4 \times 4}(\mathbb{Z})$ so that

 $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$

Then get diagram

Again a Kani-square!

Induced Kani-map has degree $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J)$ smooth!

Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H]

Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)

Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)

<□ > < @ > < E > < E > E の < ○ 26/38

2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth

Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

- 1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)
- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)

- 1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)
- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)
- 4. Write down the matrices α, β

1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 26/38

- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)
- 4. Write down the matrices α, β
- 5. Construct $K: E^{(4)} \times E^{(4)} \to E_I^{(4)} \times E_{\overline{J}}^{(4)}$ from Kani-square

- 1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)
- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)
- 4. Write down the matrices α, β
- 5. Construct $K: E^{(4)} \times E^{(4)} \to E_I^{(4)} \times E_{\overline{I}}^{(4)}$ from Kani-square
- 6. Compute K to recover equations for $E_I^{(4)} \times E_{\overline{I}}^{(4)} \rightsquigarrow$ get equation for $E_I \cong E_H$

- 1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)
- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)
- 4. Write down the matrices α, β
- 5. Construct $K: E^{(4)} \times E^{(4)} \to E_I^{(4)} \times E_{\overline{I}}^{(4)}$ from Kani-square
- 6. Compute K to recover equations for $E_I^{(4)} \times E_{\overline{I}}^{(4)} \rightsquigarrow$ get equation for $E_I \cong E_H$
- 7. Return $[E_H]$
Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

- 1. Find $I, J \subseteq \mathcal{O}$ such that: (i) [I] = [J] = [H] (ii) deg(I) prime to deg(J)
- 2. Find a, b so that $N = a \deg(I) + b \deg(J)$ is smooth
- 3. Compute a_1, a_2, a_3, a_4 such that $a = a_1^2 + a_2^2 + a_3^2 + a_4^2$ (same for b)
- 4. Write down the matrices α, β
- 5. Construct $K: E^{(4)} \times E^{(4)} \to E_I^{(4)} \times E_{\overline{I}}^{(4)}$ from Kani-square
- 6. Compute K to recover equations for $E_I^{(4)} \times E_{\overline{J}}^{(4)} \rightsquigarrow$ get equation for $E_I \cong E_H$
- 7. Return $[E_H]$

Fact Polynomial time in $|Cl(\mathcal{O})|$, no pre-computation!

Method		Dimension
Direct evaluation	Only if $deg(I)$ is smooth	1
Use endomorphisms of ${\cal E}$	$K = E \times E \to E_I \times E_{\overline{J}}$	2
Use endomorphisms of E^2	$K = E^2 \times E^2 \to E_I^2 \times E_{\overline{I}}^2$	4
Use endomorphisms of E^4	$K = E^4 \times E^4 \to E_I^4 \times E_{\overline{I}}^4$	8

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 28/38

Recall Factoring isogenies

Recall Factoring isogenies

< □ ▶ < @ ▶ < \ > ▼ ▲ > ↓ = りへで 28/38

Mathematically Computing φ_i requires time exponential in n

Recall Factoring isogenies

Mathematically Computing φ_i requires time exponential in n

Practically Right now, only have implementation of

$$\varphi \colon E_1 \times E_2 \to E_1' \times E_2' \qquad \qquad \deg(\varphi) = 2^m$$

< □ ▶ < @ ▶ < \ > ▼ ▲ > ↓ = りへで 28/38

due to [DMPR23]

Recall Factoring isogenies

Mathematically Computing φ_i requires time exponential in n

Practically Right now, only have implementation of

$$\varphi \colon E_1 \times E_2 \to E_1' \times E_2' \qquad \qquad \deg(\varphi) = 2^m$$

due to [DMPR23]

Caveat This 2d-library requires very special group structure on E

Ordinary curves with special group structure

Folklore CM Method

Naïve Sage implementation

 $\mathbb{Z}/2^{512}\mathbb{Z} \times \mathbb{Z}/2^{512}\mathbb{Z} \subseteq E(F_q)$ in ~ 30 minutes, $|E(F_q)| \sim 1024$ bits $\mathbb{Z}/2^{1024}\mathbb{Z} \times \mathbb{Z}/2^{1024}\mathbb{Z} \subseteq E(F_q)$ in ~ 28 hours, $|E(F_q)| \sim 2048$ bits

Naïve Sage implementation

 $\mathbb{Z}/2^{512}\mathbb{Z} \times \mathbb{Z}/2^{512}\mathbb{Z} \subseteq E(F_q)$ in ~ 30 minutes, $|E(F_q)| \sim 1024$ bits $\mathbb{Z}/2^{1024}\mathbb{Z} \times \mathbb{Z}/2^{1024}\mathbb{Z} \subseteq E(F_q)$ in ~ 28 hours, $|E(F_q)| \sim 2048$ bits Limitation

Naïve Sage implementation

 $\mathbb{Z}/2^{512}\mathbb{Z} \times \mathbb{Z}/2^{512}\mathbb{Z} \subseteq E(F_q)$ in ~ 30 minutes, $|E(F_q)| \sim 1024$ bits $\mathbb{Z}/2^{1024}\mathbb{Z} \times \mathbb{Z}/2^{1024}\mathbb{Z} \subseteq E(F_q)$ in ~ 28 hours, $|E(F_q)| \sim 2048$ bits Limitation

Only works for small class-groups

Best method [Sut12]

$$O\left(\left|\sqrt{\operatorname{Cl}(\mathcal{O})}\right|\log\left(\left|\sqrt{\operatorname{Cl}(\mathcal{O})}\right|\right)\right)$$

<□ > < @ > < E > < E > E の < ○ 29/38

Naïve Sage implementation

 $\mathbb{Z}/2^{512}\mathbb{Z} \times \mathbb{Z}/2^{512}\mathbb{Z} \subseteq E(F_q)$ in ~ 30 minutes, $|E(F_q)| \sim 1024$ bits $\mathbb{Z}/2^{1024}\mathbb{Z} \times \mathbb{Z}/2^{1024}\mathbb{Z} \subseteq E(F_q)$ in ~ 28 hours, $|E(F_q)| \sim 2048$ bits Limitation

Only works for small class-groups

Best method [Sut12]

$$O\left(\left|\sqrt{\operatorname{Cl}(\mathcal{O})}\right|\log\left(\left|\sqrt{\operatorname{Cl}(\mathcal{O})}\right|\right)\right)$$

Does not scale

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 30/38

Idea

Walk down the ℓ -isogeny volcano

< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ = りへで 30/38

Idea

Walk down the ℓ -isogeny volcano

Start: $\operatorname{End}(E) \cong \mathcal{O}$

After $n \ \ell$ -steps: $\operatorname{End}(E_{\ell^n}) \cong \mathcal{O}_{\ell^n} \subseteq \mathcal{O}$

< □ > < @ > < E > < E > E の < 31/38

Idea

Walk down the ℓ -isogeny volcano

Start: $\operatorname{End}(E) \cong \mathcal{O}$

After $n \ \ell$ -steps: $\operatorname{End}(E_{\ell^n}) \cong \mathcal{O}_{\ell^n} \subseteq \mathcal{O}$

< □ ▶ < @ ▶ < \ > ▼ ▲ > ↓ = り へ ○ 32/38

Idea

Walk down the ℓ -isogeny volcano

Start: $\operatorname{End}(E) \cong \mathcal{O}$

After $n \ \ell$ -steps: $\operatorname{End}(E_{\ell^n}) \cong \mathcal{O}_{\ell^n} \subseteq \mathcal{O}$

Idea

Walk down the ℓ -isogeny volcano

Start: $\operatorname{End}(E) \cong \mathcal{O}$

After $n \ \ell$ -steps: $\operatorname{End}(E_{\ell^n}) \cong \mathcal{O}_{\ell^n} \subseteq \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma

$$|\operatorname{Cl}(\mathcal{O}_{\ell^n})| = |\operatorname{Cl}(\mathcal{O})| \ell^n \left(1 - \left(\left(\frac{\ell}{D}\right)\right) \frac{1}{\ell}\right) \sim \ell^n$$

Idea

Walk down the ℓ -isogeny volcano

Start: $\operatorname{End}(E) \cong \mathcal{O}$

After $n \ell$ -steps: $\operatorname{End}(E_{\ell^n}) \cong \mathcal{O}_{\ell^n} \subseteq \mathcal{O}$

Lemma

$$|\mathrm{Cl}(\mathcal{O}_{\ell^n})| = |\mathrm{Cl}(\mathcal{O})| \, \ell^n \left(1 - \left(\left(\frac{\ell}{D} \right) \right) \frac{1}{\ell} \right) \sim \ell^n$$

Note This is not secure! [DDF21]

Clapoti: In two dimensions on ordinary curves

< □ ▶ < @ ▶ < \ > ▶ < \ > ▶ \ \ = ▶ < \ > \ > \ 34/38

Clapoti: In two dimensions on ordinary curves

Find ordinary E using CM Method and volcano walking

Clapoti: In two dimensions on ordinary curves

Find ordinary E using CM Method and volcano walking Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

1. Find $I, J \subseteq \mathcal{O}$ such that

Find *I*, *J* ⊆ *O* such that
(i) [*I*] = [*J*] = [*H*]

<□ > < @ > < E > < E > E の < ○ 34/38

- 1. Find $I, J \subseteq \mathcal{O}$ such that
 - (i) [I] = [J] = [H]
 - (ii) $\deg(I)$ prime to $\deg(J) = \deg(\overline{J})$

- 1. Find $I, J \subseteq \mathcal{O}$ such that
 - (i) [I] = [J] = [H]
 - (ii) $\deg(I)$ prime to $\deg(J) = \deg(\overline{J})$
 - (iii) there exist endomorphisms $\alpha, \beta \in \mathcal{O}$ so that

 $\deg(\alpha)\deg(I) + \deg(\beta)\deg(J) = N = 2^n$

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 34/38

- 1. Find $I, J \subseteq \mathcal{O}$ such that
 - (i) [I] = [J] = [H]
 - (ii) $\deg(I)$ prime to $\deg(J) = \deg(\overline{J})$
 - (iii) there exist endomorphisms $\alpha, \beta \in \mathcal{O}$ so that

 $\deg(\alpha)\deg(I) + \deg(\beta)\deg(J) = N = 2^n$

2. Compute kernel of K. Depends on $\alpha, \beta, I\overline{J}$

- 1. Find $I, J \subseteq \mathcal{O}$ such that
 - (i) [I] = [J] = [H]
 - (ii) $\deg(I)$ prime to $\deg(J) = \deg(\overline{J})$
 - (iii) there exist endomorphisms $\alpha, \beta \in \mathcal{O}$ so that

 $\deg(\alpha)\deg(I) + \deg(\beta)\deg(J) = N = 2^n$

- 2. Compute kernel of K. Depends on $\alpha, \beta, I\overline{J}$
- 3. Pass ker(K) to the 2d-library [DMPR23] to obtain an equation for E_I

Find ordinary E using CM Method and volcano walking

Input: Ideal class $[H] \in Cl(\mathcal{O})$, Curve class $[E] \in Ell(\mathcal{O})$ Output: $[E_H]$

- 1. Find $I, J \subseteq \mathcal{O}$ such that
 - (i) [I] = [J] = [H]
 - (ii) $\deg(I)$ prime to $\deg(J) = \deg(\overline{J})$
 - (iii) there exist endomorphisms $\alpha, \beta \in \mathcal{O}$ so that

 $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J) = 2^n$

- 2. Compute kernel of Kani-map K. Depends on $\alpha, \beta, I\overline{J}$
- 3. Pass ker(K) to the 2d-library [DMPR23] to obtain an equation for E_I

1.(iii) Finding endomorphisms $\alpha, \beta \in \mathcal{O}$ so that $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J) = 2^n$

1. (iii) Finding endomorphisms $\alpha,\beta\in\mathcal{O}$ so that $N=\deg(\alpha)\deg(I)+\deg(\beta)\deg(J)=2^n$

Lemma $\alpha = x + y\sigma \in \mathcal{O} = \mathbb{Z} + \sigma\mathbb{Z}$

 $\deg(\alpha) = x^2 + A_{\sigma} x y + B_{\sigma} y^2 \qquad \qquad A_{\sigma}, B_{\sigma} \in \mathbb{Z} \qquad \qquad A_{\sigma}, B_{\sigma} \sim \sqrt{|\mathrm{Cl}(\mathcal{O})|}$

1.(iii) Finding endomorphisms $\alpha, \beta \in \mathcal{O}$ so that $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J) = 2^n$

Lemma $\alpha = x + y\sigma \in \mathcal{O} = \mathbb{Z} + \sigma\mathbb{Z}$

 $\deg(\alpha) = x^2 + A_{\sigma} x y + B_{\sigma} y^2 \qquad \qquad A_{\sigma}, B_{\sigma} \in \mathbb{Z} \qquad \qquad A_{\sigma}, B_{\sigma} \sim \sqrt{|\mathrm{Cl}(\mathcal{O})|}$

Case (y = 0) we can only obtain squares

1.(iii) Finding endomorphisms $\alpha, \beta \in \mathcal{O}$ so that $N = \deg(\alpha) \deg(I) + \deg(\beta) \deg(J) = 2^n$

Lemma $\alpha = x + y\sigma \in \mathcal{O} = \mathbb{Z} + \sigma\mathbb{Z}$

 $\deg(\alpha) = x^2 + A_{\sigma}xy + B_{\sigma}y^2 \qquad A_{\sigma}, B_{\sigma} \in \mathbb{Z} \qquad A_{\sigma}, B_{\sigma} \sim \sqrt{|\mathrm{Cl}(\mathcal{O})|}$

< □ > < @ > < E > < E > E のへで 35/38

Case (y = 0) we can only obtain squares

Case $(y \neq 0)$ numbers represented by deg (α) explode with $|Cl(\mathcal{O})|$

Calling the 2-dimensional isogeny library

It appears efficient isogeny class-group evaluation on ordinary elliptic curves is infeasible with current technology

It appears efficient isogeny class-group evaluation on ordinary elliptic curves is infeasible with current technology

Nevertheless ...
It appears efficient isogeny class-group evaluation on ordinary elliptic curves is infeasible with current technology

Nevertheless ...

Implementations

- (i) CM Method
- (ii) Ideals of endomorphism rings + rudimentary class group computation $\sim 2^{13}$
- (iii) Finding matching endomorphisms $\sim 2^{10}$
- (iv) Translation from endomorphisms to isogenies
- (v) Computing the Kani-kernel

Outlook

Outlook

Curve finding

Difficult problem

Removing the requirement of special group structure

Pair finding

More precise lattice sampling techniques (α in $\mathbb{Z} + \sigma \mathbb{Z}$)

Better 2-dimensional heuristics a la SQISign-2D-West [BDDF⁺24]

Higher-dimensional isogenies

Higher higher-dimensional isogeny-libraries

Thank you!

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 38/38

- [PR23] Introducing Clapoti(s): Evaluating the isogeny class group action in polynomial time. Aurel Page and Damien Robert (2023). From eprint.iacr.org/2023/1766.
- [DFM19] Threshold Schemes from Isogeny Assumptions. Luca De Feo and Michael Meyer (2019). From eprint.iacr.org/2019/1288.pdf.
- [DFG18] SeaSign: Compact isogeny signatures from class group actions. Luca De Feo and Steven D. Galbraith (2018). From eprint.iacr.org/2018/824.
- [BKV19] CSI-FiSh: Efficient Isogeny based Signatures through Class Group Computations. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren (2019). From eprint.iacr.org/2019/498.
- [CLM⁺18] CSIDH: An Efficient Post-Quantum Commutative Group Action. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes (2018). From eprint.iacr.org/2018/383.

 [DdSGOPS18] Semi-Commutative Masking: A Framework for Isogeny-based Protocols, with an Application to Fully Secure Two-Round Isogeny-based OT.
Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Christophe Petit, and Nigel P. Smart (2018). From eprint.iacr.org/2018/648.pdf.

- [DdSGP23] New proof systems and an OPRF from CSIDH. Cyprien Delpech de Saint Guilhem and Robi Pederson (2023). From https://eprint.iacr.org/2023/1614.pdf.
- [DFFK⁺23] SCALLOP: scaling the CSI-FiSh. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz Panny, and Benjamin Wesolowski (2023). From eprint.iacr.org/2023/058.
 - [CLP23] SCALLOP-HD: group action from 2-dimensional isogenies. Mingjie Chen, Antonin Leroux, and Lorenz Panny (2023). From eprint.iacr.org/2023/1488.

- [GPSV18] Quantum Equivalence of the DLP and CDHP for Group Actions. Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Vercauteren (2018). From eprint.iacr.org/2018/1199.
 - [MZ22] Full Quantum Equivalence of Group Action DLog and CDH, and More. Hart Montgomery and Mark Zhandry (2022). From eprint.iacr.org/2022/1135.
- [GLM24] A Simpler and More Efficient Reduction of DLog to CDH for Abelian Group Actions. Steven Galbraith, Yi-Fu Lai, and Hart Montgomery (2024). From eprint.iacr.org/2024/191.
- [DDF21] On the security of OSIDH. Pierrick Dartois and Luca De Feo (2021). From eprint.iacr.org/2021/1681.
 - [Sut12] Accelerating the CM method. Andrew Sutherland (2012). From arxiv.org/pdf/1009.1082.

- [DMPR23] An Algorithmic Approach to (2,2)-isogenies in the Theta Model and Applications to Isogeny-based Cryptography. Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert (2023). From eprint.iacr.org/2023/1747.
- [DFKS18] Towards practical key exchange from ordinary isogeny graphs. Luca De Feo, Jean Kieffer, and Benjamin Smith (2018). From eprint.iacr.org/2018/485.
 - [GHS01] Extending the GHS Weil descent attack. Steven G. Galbraith, Florian Hess, and Nigel P. Smart (2001). From eprint.iacr.org/2001/054.
 - [CJS10] Constructing elliptic curve isogenies in quantum subexponential time. Andrew M. Childs, David Jao, and Vladimir Soukharev (2010). From arxiv.org/abs/1012.4019. The original version is from December 2010. In April 2018 there was a revision.

- [ADFMP20] Cryptographic Group Actions and Applications. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis (2020). From eprint.iacr.org/2020/1188.
 - [Cou97] Hard Homogeneous Spaces. Jean-Marc Couveignes (1997). From eprint.iacr.org/2006/291.
 - [RS06] Public-key Cryptosystem Based on Isogenies. Alexander Rostovstev and Anton Stolbunov (2006). From eprint.iacr.org/2006/145.
- [BDDF⁺24] SQIsign2D-West: The Fast, the Small, and the Safer. Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert, and Benjamin Wesolowski (2024). From eprint.iacr.org/2024/760.
 - [Kup10] A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. Greg Kuperberg (2010). From arxiv.org/abs/quant-ph/0302112.