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Cryptographic Group Actions

Motivation Diffie-Hellman key exchange is not post-quantum
Closer Look G = (g,) order p

(i) Sample a,b & Z/pz — {0} = (Z/pz)"

(ii) Publish g§, g3
(iii) Recover k = g = (g§)" = (98)"
Insight This exponentiation is a group action! (Z/pz)>< x G — G;(e,g) — g°
Recall (Group action) H a group, X a set

HxX—-X (hyz)—h-z
(i) lg-z=¢ (Exponentiation: g = g)

(i) hy - (hy-z) = (hohy) - 2 (Exponentiation: (g“)b = g%)
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Cryptography from group actions

Rephrase NIKE from group action

Setup: H x X — X group action, H commutative, z, € X
(i) Sample a,b & H

(ii) Publish a - zq,b - 24

(iii) Recover k = (ab)-zo=b-(a-zy) =a-(b-xzy)
Cryptographic Group Action if it is hard to If it is hard to
(i) (“DLP”) Recover a from (z,a - )

(ii) (“CDHP”) Recover k = (ab) - z from (z,a - z,b - z)

Note These are equivalently hard problems on a quantum
computer [GPSV18,MZ22, GLM24]



Cryptographic Group Actions

Conclusion CGAs generalise exponentiation and we get a NIKE



Cryptographic Group Actions

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM*18§]
Signatures [DFG18,BKV19|
Threshold Signatures [DFM19]
Oblivious Transfer [DdSGOPS18|

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT,
Naor-Reingold PRF) [ADFMP20]



Cryptographic Group Actions

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM*18§]
Signatures [DFG18,BKV19|
Threshold Signatures [DFM19]
Oblivious Transfer [DdSGOPS18|

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT,
Naor-Reingold PRF) [ADFMP20]

Since: e.g. Oblivious Pseudorandom Functions [DdASGP23]



Cryptographic Group Actions

Conclusion CGAs generalise exponentiation and we get a NIKE

...but also

Public Key Encryption [CLM*18§]
Signatures [DFG18,BKV19|
Threshold Signatures [DFM19]
Oblivious Transfer [DdSGOPS18|

+ more (Smooth & Projective Hashing, Dual-Mode PKE, SSP-OT,
Naor-Reingold PRF) [ADFMP20]

Since: e.g. Oblivious Pseudorandom Functions [DdASGP23]

Naturally arising CGA from isogenies: Isogeny Class-Group Action [Cou97, RS06|
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Attacks on CGAs

H x X — X, H commutative
Classical [GHSO01]

Complexity O (\/ﬁ )

Quantum [Kupl0,CJS10]

Complexity O (exp( log(|H |)>>
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Elliptic curves and Isogenies

Elliptic curves are algebraic groups

Algebraic

v =z3+az+0b

Slogan “Described by polynomaials”

Groups

P+Q:
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Elliptic curves and Isogenies

Isogenies are morphisms of algebraic groups
Slogan “Isogenies preserve geometric and group structure”

Example Scalar multiplication

[N]lgz:E—-E P~—NP=P+-.-+P
L

N times
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Elliptic curves and Isogenies

Lemma Every isogeny ¢: E — E' has a reverse ¢: E' — E
Gop=[dlg @o¢=[dlp d=deg(e)
Naive Evaluating an isogeny of degree d costs O(d)

Lemma deg(¢¢) = deg(¢) deg(¢) and when deg(¢) = py, -+- p1

E 4 S B
\ / deg(¢;) = p;
“ El @2 P ¢n—1> Em_l o

Better If all p; < B cost of evaluating is O(Blog(d))

Slogan “Isogenies of smooth degree are easy to compute”
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Definition Endomorphism Ring

End(E) = {¢: E — E | ¢ an isogeny}

(¢ +w)(P) =
(pw)(P) =

- ¢(P) +w(P)
(pow)(P)

e g



Towards an action: The Endomorphism Ring

Definition Endomorphism Ring

End(E) = {¢: E — E | ¢ an isogeny}

(¢ +)(P) = ¢(P) + (P)
(¢w)(P) = (9 0 w)(P)

Example Scalar multiplication [N]g is an endomorphism £ — E
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Towards an action: Classifying the Endomorphism Rings

Theorem (Deuring) End(F) isomorphic (as ring) to

(1)

(ii) Rank-2 lattice C imaginary quadratic field
Commutative
Ordinary

(iv) Rank-4 lattice C quaternion algebra

Non-commutative

Supersingular

We are interested in the ordinary case
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Towards an action: Visualising the Endomorphism Ring

Imaginary Quadratic Fields
QVD)cC D<0€eZ

End(E) = 1Z + oZ

Lattice + Ring = Order ~» End(E) = O
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Isogeny Class-Group Action

Correspondence Ideal I ¢ O =~ End(E) ~ Isogeny I: E — E;

Definition Ideal Class Group and its Action

i) End(E,) =~ End(E) = O
Cl(O):{Classes ] of ideals T c © s, ) End(Fy) = End(B) }

(ii) [l =] < E;=E;
Group law: [I][J] = [[J], [O] is the neutral element and [[]~! = [I]
Acts on
Ell(O) = {Isomorphism classes [E] of elliptic curves E s.t. End(EF) = O}
Cl(0) x El(0) — El(0) (I, [B]) = (1] - [B] = [B]]
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Computing this isogeny class-group action

Input: [I] € C1(O) and [E] € El(O)

Output: [I]- [E] = [E{]

(i) Choose representative J c O so that [J] = [/]
(i

(ii

Construct isogeny J: B — Ej;

)
)
) Evaluate the isogeny J: E — E; to obtain equation for E;
(iv) Return [E;] = [E]

J: E — E; might have large non-smooth degree
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Higher dimensional methods: Abelian Varieties

Recall Elliptic curves are algebraic groups
...FE x E also group
...E X E also algebraic

...but E x E is not an Elliptic curve

Resolution
Products of elliptic curves are Abelian varieties
Isogenies between Abelian varieties are morphisms of algebraic groups

Example Scalar multiplication [N]4: A— A;,P— NP =P+ ---+ P
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Abelian Varieties: Features of isogenies

Lemma

For all isogenies

p: By x--xXE, = E] X--XE]
the reverse map exists
@By X XE, -5 E x-xE,
However it must not necessarily satisfy
Pop= [d]Elx---xEn poP = [d]E’lx---xELL
When it does, we say that ¢ has degree d

Evaluating an isogeny of degree d costs O(d)
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Abelian Varieties: Features of isogenies

Lemma deg(¢¢) = deg(¢) deg(¢) and when deg(¢) = pp, - p1

By x - xE, ? > Bl X - X Bl
\) / deg(¢;) = p;
& A $2 ? 447n—1> A1 om

Better If all p; < B cost of evaluating is O(Blog(d))
Slogan “Isogenies of smooth degree are easy to compute”
A; generic Abelian Variety (not necessarily F{ x --- X E})

Evaluating ¢; requires heavy machinery: Mumford’s Theta Coordinates
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E, 23y R
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Going into higher dimensions: Kani’s Lemma

Lemma (Kani)

From a commuting square of isogenies between powers of elliptic curves

' ’ dy = deg(g;) = deg(ho)

sl g~ degh) = ceglan)

we get the Kani 1sogeny

K=|9% 9% : E? x B} — E? x E}
~hy hy

of degree
deg(K) =d; +d,



Going into higher dimensions: Kani’s Lemma

Lemma (Kani)

From a commuting square of isogenies between general Abelian varieties

A 25 A
' ’ dy = deg(gl) = deg(h2)

hll lgz dy, = deg(h;) = deg(gs)
A4 T AZ

we get the Kan: tsogeny

K = 5 /gf, A XAy = A XAy
—hy  hy

of degree
deg(K) = dl + d2
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Interpretation Kani’s Lemma

B, 23 B,

g 9
hl\L \ng R K= (

Z|:BE{xFEy— FE; X E
;1 ;2> 1 2 3 4
E4Hh2 E2
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Interpretation Kani’s Lemma

B, 23 B,

91 G

hl\L \ng Rasatess K:< ;L /\%,):EIXEQ—)Est‘I
- 2

B, —— B,

Slogan “Isogenies of dimension 1 have been embedded into dimension 2”
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Going into higher dimensions: Kani’s Lemma

Interpretation Kani’s Lemma

B, 23 B,

91 G

hl\L \ng Rasatess K:< ;L /\%,):EIXEQ—)Est‘I
- 2

B, —— B,

Slogan “Isogenies of dimension 1 have been embedded into dimension 2”
Idea deg(K) = d; + d,

If g;, h; so that deg(K) = d; + d, = deg(g;) + deg(h,) is smooth

...we can evaluate K easily!

...then recover g;, h; by evaluating K e.g.

Y P\ 9:1(P) -
(& 2)0)- () - =0
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Recall
(i) End(E) = O c Q(vD)
(ii) I € © ideal ~ I: E — E; isogeny
(iii) [I]- [E] — [Ey] is a group action
[]- ([]- [B]) = U]U]- [B] = [1J] - [E] = V1] - [E] = V][] - [B] = ] - (I1] - [E])
in a diagram

] —1 (5] E—1 g

R

[E5] T [E1] By — E'=Ey
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«O>» «Fr «=>»

«E>

DA e



Clapoti [PR23]

Recall [I]7* = [I]. So if [J] = [I] then [J] = [J]~* = [I]?



Clapoti [PR23]

Recall [I]7* = [I]. So if [J] = [I] then [J] = [J]~* = [I]?

(5] — (2]

a) |o

5] — 1B
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Recall [I]7! =

= [I]. So if [J] = [I] then [J] =

8] — (2]
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E—L1 3y E
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Recall [I]! = [I]. So if [J] = [I] then [J] =

[E] —) [E]

a) o

125 —= 1B

(i) Square commutes

VI =

=[]~

E’—)E]

i
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Recall [I]! = [I]. So if [J] = [I] then [J] =

8] — (2]

a) L B —

B5] — 12

(i) Square commutes
(ii) Horizontal degree deg([/)
(iii) Vertical degree deg(J)

VI =

=[]~

E—L 3 E
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Recall [I]7* = [I]. So if [J] = [I] then [J] = [J]~* = [I]!
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(ii) Horizontal degree deg([/)
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Recall [I]7* = [I]. So if [J] = [I] then [J] = [J]~* = [I]!

[E] —> [E] E—1— B
T R
[B5] — |B] By —» E=Ej

(i) Square commutes

(ii) Horizontal degree deg([/)
(iii) Vertical degree deg(J) = deg(J)
Conclusion This is a Kani-square!

Kani-map K has degree N = deg(I) + deg(J)
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N = deg(I) + deg(J) might not be smooth
Idea

a,f € O =~End(E)

E—2yE—1yE
p \Lﬂ
E 5 —15 B
?J'l 7 \Lj
By =7 B —7 E

Again a Kani-square!

Induced Kani-map degree N = deg(al) + deg(BJ) = deg(a) deg(I) + deg(B) deg(J)

Slogan “Composing with endomorphisms gives us wiggle room”
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Extend this idea

Idea Endomorphism E? — E?

a; Qg
a= :E* - E?
—Qy o

deg(ar) = af + a3

has

a,09 €7
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Extend this idea

Idea Endomorphism E4 — B4
a; as as a4
o= IR 9 0 : B* - B4 a1,0Q9,03,04 € Z
—a3 —a4 Oy az
—a4 a3z —Gay Qg
has

deg(ar) = af + a3 +af + af



Clapoti [PR23]

Extend this idea

Idea Endomorphism E4 — B4
a; as as a4
o= T4z 41 G s : B* - B4 a1,0Q9,03,04 € Z
—a3 —a4 Oy az
—a4 a3z —Gay Qg
has

deg(ar) = af + a3 +af + af

Theorem (Jacobi) Every positive integer is the sum of four squares
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Conclusion For any smooth N and ideals I,J find «, 8 € Mat,,4(Z) so that

N = deg(cr) deg(I) + deg(8) deg(J)

Then get diagram

Bt —2y gt 1y gt
ﬁl lﬁ I 000
01 00
@) 4 _ . 4 4
E* gt I g where 4 = N BN
I 001 0 !
3(4)l f@l lj@) 00 0 I

4 v éd N 4
Ej a/Ej 4)/E

I

Again a Kani-square!
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Conclusion For any smooth N and ideals I,J find «, 8 € Mat,,4(Z) so that
N = deg(r) deg(I) + deg(B) deg(J)

Then get diagram

Bt —2y gt 1y gt
ﬁl lﬁ I 000
01 00
@) 4 _ . 4 4
E* gt I g where 4 = N BN
I 001 0 !
f‘”l f‘”l 1 000 I
E§ Ly E§ 1(4)> E*

Again a Kani-square!

Induced Kani-map has degree N = deg(«) deg(/) + deg(B) deg(J) smooth!
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Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

. Find I,J € O such that: (i) [[] =[J] =[H] (ii) deg({) prime to deg(J)
. Find a,b so that N = adeg(l) + bdeg(J) is smooth

1
2
3. Compute ay,a,,as,a, such that a = a? + a2 + a2 +a? (same for b)
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Clapoti Summary

Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)

Output: [Ey]
1. Find I,J € O such that: (i) [[] =[J] =[H] (ii) deg({) prime to deg(J)
2. Find a,b so that N = adeg(l) + bdeg(J) is smooth
3. Compute ay,a,,as,a, such that a = a? + a2 + a2 +a? (same for b)
4. Write down the matrices «,
5. Construct K: E® x E®) — E§4) X E§4) from Kani-square
6. Compute K to recover equations for E1(4) X E;‘l) ~ get equation for E; =~ Ey
7. Return [Ey]

Polynomial time in |Cl(O)|, no pre-computation!



Comparison of dimensions

Method Dimension
Direct evaluation Only if deg(7) is smooth | 1
Use endomorphisms of & | K =E X E — E; X E5 2
Use endomorphisms of B2 | K = B? x B*> — Ef x B2 | 4
Use endomorphisms of B4 | K = E* x E* — Ef x E; 8

al® al®

E 2 g E* = E} E* = E}

B —I> E; ,BJ\L \Lﬁ] pﬂml \Lﬂ 7(2) pﬂl \LBJ(‘I)
_ 2 2 4 4
B; — B B — > B E; —» E
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Recall Factoring isogenies

2 / !
Ei XX E, > Bl X - X B}

xfh > >Am_1/¢m

2 Pm—1
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Computing higher-dimensional isogenies in practice

Recall Factoring isogenies

¢
E,x--xE, > B X - X B},
qo\) N y /
! Al oy 7 Om—1" Am_l om

Mathematically Computing ¢; requires time exponential in n

Practically Right now, only have implementation of
¢: By x By = B} X Ej deg(p) = 2™
due to [DMPR23]

This 2d-library requires very special group structure on E
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Ordinary curves with special group structure

Folklore CM Method

Naive Sage implementation

Z./25127, x 7./25127, C E(F,) in ~ 30 minutes, |E(F,)| ~ 1024 bits
7210247, x 7,/219247, C E(F,) in ~ 28 hours, |E(F,)| ~ 2048 bits

Only works for small class-groups
Best method [Sut12]

o (| \/01(0)| log (’ \/01(0)‘))

Does not scale
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Ordinary curves with special group structure: Larger Class Group

Idea

Walk down the £-isogeny volcano
Start: End(E) = O

After n {-steps: End(Em) = Opm < O .

Lemma

ICI(O,)] = |CI(O)] (1 _ ((g)) %) g

This is not secure! [DDF21]



Clapoti: In two dimensions on ordinary curves



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that
(i) ] =[]=[H]



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that

(i) U] =WV]=[H] o
(ii) deg(I) prime to deg(J) = deg(J)



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that
() 1] = V] = [H] B
(ii) deg(I) prime to deg(J) = deg(J)
(iii) there exist endomorphisms «, 8 € O so that

deg(a) deg(l) + deg(B)deg(J) =N =2"



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that
() 1] = V] = [H] B
(ii) deg(I) prime to deg(J) = deg(J)
(iii) there exist endomorphisms «, 8 € O so that

deg(a) deg() + deg(B) deg(J) = N = 2"
2. Compute kernel of K. Depends on a, 8, IJ



Clapoti: In two dimensions on ordinary curves

Find ordinary EF using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J ¢ O such that
(i) ] =[1=I[H] o
(ii) deg(I) prime to deg(J) = deg(J)
(iii) there exist endomorphisms «, 8 € O so that
deg(a) deg(l) + deg(B)deg(J) =N =2"
2. Compute kernel of K. Depends on a, 8, IJ
3. Pass ker(K) to the 2d-library [DMPR23] to obtain an equation for E;



Clapoti: In two dimensions on ordinary curves

Find ordinary E using CM Method and volcano walking
Input: Ideal class [H] € Cl(O), Curve class [E] € Ell(O)
Output: [Ey]

1. Find I,J € O such that
(i) U] =V]=[H] B
(ii) deg(I) prime to deg(J) = deg(J)
(iii) there exist endomorphisms «, 8 € O so that
N = deg(a) deg(I) + deg(p) deg(J) = 2"
2. Compute kernel of Kani-map K. Depends on «, 8, 1J
3. Pass ker(K) to the 2d-library [DMPR23]| to obtain an equation for E;
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N = deg(a) deg(I) + deg() deg(J) = 2"

Lemmaa=z+yoc € O=%Z+cZ
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Case (y = 0) we can only obtain squares



Solving degree equations

1.(iii) Finding endomorphisms «, 8 € O so that
N = deg(a) deg(I) + deg() deg(J) = 2"

Lemmaa=z+yoc € O=%Z+cZ
deg(a) = 22 + A,y + By’ Ay, B, €2 Ay, By~ /IC1(O)]

Case (y = 0) we can only obtain squares

Case (y # 0) numbers represented by deg(a) explode with |Cl(O))|



Calling the 2-dimensional isogeny library
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Conclusion

It appears efficient isogeny class-group evaluation on ordinary elliptic curves is

infeasible with current technology
Nevertheless ...
Implementations

(i) CM Method

(ii) Ideals of endomorphism rings + rudimentary class group computation ~ 213

)
)

(iii) Finding matching endomorphisms ~ 21°

(iv) Translation from endomorphisms to isogenies
)

(v) Computing the Kani-kernel



Outlook

Outlook

Curve finding

Difficult problem

Removing the requirement of special group structure

Pair finding

More precise lattice sampling techniques (« in Z + 0Z)

Better 2-dimensional heuristics a la SQISign-2D-West [BDDEF+24]
Higher-dimensional isogenies

Higher higher-dimensional isogeny-libraries



Thank you!
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