ETH:zurich

TAYLOR EXPANSIONS OF
MODULAR FORMS AT CM POINTS

A A 0 |
U«Mwo MO VU A.‘é\.@ m AW

= A A,

RYAN RUEGER

A semester thesis submitted to the Swiss Federal Institute of Technology Zurich,
November 2023.

Supervised by Dr. M. Schwagenscheidt.

o a «w »

Contents

Introduction

Complex-multiplication

1.1 Elliptic Curves and their representations
1.2 Elliptic curves and Lattices
1.3 Interlude: Lattice representations and modularity of the j-invariant .
1.4 Classification of Endomorphisms of Elliptic CurvesI
1.5 Interlude: Orders in Quadratic Number Fields
1.6 Classification of Endomorphisms of Elliptic Curves II.
1.7 The class-group action on elliptic curves with complex multiplication
1.8 Complex-multiplication points and Binary quadratic forms

The Taylor expansion of modular forms

2.1 Trivial Taylor coefficients
2.2 Non-trivial Taylor coefficients
2.3 Computing derivatives of modular forms with recursive methods . .
2.4 Computing the recursions
2.5 O’Sullivan-Risager’s method for developing recursions in S19
2.6 Summary of reCursions e e e e
2.7 Afinalexpression. e

Algorithms to determine periodic and non-vanishing behaviour
3.1 General strategy
3.2 Periodic behaviour of recursively defined sequences
3.3 Reducing modulo d, F4(t) for periodicity and efficiency
3.4 Efficient period detection for the recursively defined sequences . . .
3.5 Implementing O’Sullivan-Risager’s method
3.6 Installation and usage of TaylorExpansion
3.7 Verification of the implementation
3.8 Non-vanishing of the Fourier Coefficients of the j-function
3.9 Further results and growth of the period

A Sage implementation MFTaylorExpansion

Memory usage comparison

Reduction during computation example

Polynomials of the Fourier coefficients of the j-function at ¢

References

© 00 N o1 NN

43

52

56

57

68

Taylor Expansions of Modular Forms at CM Points

Introduction

The Fourier expansion, or g-expansion, of a modular forms is well-known. However, as holomorphic
functions, modular forms also have a Taylor expansion at every point in the complex upper half-
plane H. Unfortunately, the naive Taylor expansion at any given point 2y in H only has a radius
of convergence r = Im(z2g), which is unsatisfying, since the domain of definition of a modular form
is the entirety of H.

We will develop a method for computing the Taylor expansion of a modular form at complex-
multiplication points (CM points) that is valid on the whole of H in two steps. First we will find
a Taylor expansion of f that is valid on H as a function of the derivatives f(") of f; then we will
use a recursive procedure to calculate the derivatives of f, making the computation numerically
easy without employing any analytic tools. Importantly, these recursions can be easily computed
using computer algebra programs such as Sage.

In [OR12], O’Sullivan and Risager reference the work of Damerell to note that the Fourier
coefficients of a cusp form when evaluated at a CM point in H are almost algebraic. To be
more precise, given a cusp form f, a CM point ¢ in H there exist complex numbers «, A so that
cf(¢,n)/KA™ is algebraic for all n.

In particular, for ¢ and p we will show that

)" n+k/
cs(n,p) = %(ﬁ) + 2(2\/5993
e 0) = Ean o2t %, o),

(k+2n)/4
) ()

where (2p is the Chowla-Selberg period and 7,(t), ¢,(t) recursively defined polynomials.

In Section 1 we give an overview of the theory of complex multiplication to understand the
meaning of a CM point. We show that the CM points 7 in H parametrise the elliptic curves over
C with endomorphism rings isomorphic to the order Zz + Z in Q(r). In Section 2 we develop the
theory required to compute the Taylor expansion of a modular form at any CM point in H. We
note that at {_4, = ¢ and {_3 = p the expressions are particularly easy to compute. Finally, in
Section 3 we present methods to detect non-vanishing behaviour of Fourier coefficients.

Using the methods of Zagier and O’Sullivan-Risager, we prove in Subsection 3.8 that the non-
trivial Fourier coefficients of the j-function expanded at ¢ and p are eventually non-zero. Around
o the expansion can be particularly compactly described. In fact, we will see that

46n(0)=6 (mod7) and gen:a(0)=1 (mod 7)

for n > 1, where g,(t) are recursively defined polynomials satisfying the description for c;(n,t)
as above. In particular, we see that the non-trivial Fourier coefficients of 7 expanded at p are all
non-zero except for the first one.

The graphic on the title page is a stylised version of Figure 3.2, a graph depicting the behaviour
of the coefficients of the sequence g,(t) (mod 7) for E over one period. Each line depicts the
coefficient of a different monomial t* in g,(¢) (mod 7).

rrueger@ethz.ch — n.ethz.ch/~rrueger 1

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

1

Complex-multiplication

The theory of complex multiplication arises naturally in the study of endomorphism rings of elliptic
curves. To see this we briefly review some theory of elliptic curves in the following to establish
a bijection between elliptic curves E defined over C and lattices {2 in C. From here, we will see
that endomorphisms of an elliptic curve F are in bijection with {A € C | A2 € 2} — justifying

the nomenclature “complex multiplication”.

1.1 Elliptic Curves and their representations

As Milne points out in Elliptic Curves [Mil06], there are many equivalent definitions. At their
heart, elliptic curves over a field k are one-dimensional regular (irreducible') projective varieties
with a group law, but can be expressed more concretely as projective varieties cut out from IP’Z by
equations in Wezierstrass form

Y2Z +a . XYZ +a3YZ? = X3+ a,X%Z + a, XZ° + agZ° (1.1)

whose coefficients a; lie in k. We also call k-triples (z : y : z) that satisfy the equation (1.1)
k-rational points on the curve; in part, to distinguish from triples (z : ¥ : 2) in some extension
F'/k that may also satisfy the equation.

In the projective variety formulation of an elliptic curve, the group law can be expressed
geometrically, or via explicit formulas given by Silverman and Tate in Rational points on Elliptic
curves [ST15] Chapter 1.4. Importantly, the explicit formulas show that addition can be expressed
as a regular map, and so is compatible with the variety structure.

More precisely, since they are complete [Mill7, Th. 7.22, pg 158] and connected (they are
irreducible) with a group law described by regular maps, elliptic curves are instances of abelian
varieties. As such, we emphasise that a reqgular map of elliptic curves is a morphism in the category
of varieties, and we will call a homomorphism a morphism in the category of abelian varieties.
That is, a homomorphism is a regular map which is also a morphism of groups. It turns out,
however, that these notions are not too different: a regular map is a homomorphism if and only if
it sends 0 to 0, a direct consequence of [Mil08, Cor. 1.2, pg. 9.

The neutral element of the group is often denoted by O and called the point at infinity for
geometric reasons. We use the notation F/k to denote an elliptic curve E over the field k; this is
consistent with the notation of field extensions, because of the contravariant equivalence of cate-
gories of 1-dimensional regular projective curves over k and field extensions F'/k of transcendence
degree 1 [Vak23, Th. 16.3.3, pg.436; Sil09, Rem. 2.5, pg.22].

Finally, we note that many authors introduce the language of isogenies in the context of elliptic
curves. An isogeny is a surjective homomorphism between abelian varieties of the same dimension.
However due to their relatively simple structure, any non-constant homomorphism of elliptic curves
is automatically surjective. Indeed, its image is dense (dominant) [Gall8, Lem. 8.1.3, pg. 145] and
finite [Gall8, Th. 8.1.5, pg. 146], hence surjective [Mill7, Prop. 2.41, pg. 50].

!For some authors, all projective varieties are automatically irreducible.

rrueger@ethz.ch — n.ethz.ch/~rrueger 2

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Whilst the representation (1.2) is more concrete, computations are still not necessarily very
easy. For example, we would like to compute the j-invariant of an elliptic curve, as an easy function
of its coefficients. To that end, we perform the following reductions.

When k has characteristic char(k) # 2,3, we can replace Y with Y — a;X /2 to eliminate the
XYZ term in (1.1)

(Y — a1X/2)°Z + a; X (Y — a1X/2)Z + ag(Y + a1X/2)2>
=Y?Z - a1 XYZ +a2X%Z)4+ a1 XY Z — a?X%Z /2 + a3Y 72 + a1a3X 222
=Y2Z —a2X%Z /4 + a3Y Z? + a1a3X Z2)2.
Rearranging, we obtain the equation
Y2Z +a3YZ?% = X3+ (ay + a?/4)X2Z + (ag — a103/2)X 22 + agZ>.

We can now complete the square in terms of Y, eliminating the YZ2 term and depress the cubic
in X, eliminating the X2Z term. The required substitutions for this procedure replace Y with
Y —a3Z /2 and X with X — (ay +a?/4)/3 Z respectively. We result in an equation of the following
form

Y2Z = X3 +aXZ?%+b23 (1.2)

and call this the reduced or short Weierstrass form of an elliptic curve. We use the notation £(a, b)
to denote the variety cut out by the equation (1.2). Notably, the point at infinity O is given by
(0:1:0) in homogeneous coordinates.

The k-rational points on £(a,b) in the line {Z =1,Y =0} = {(z:0:1) | = € k}, are exactly
roots of X3 + aX + b in k, and so uniquely determined by a, b.

We note that each of the substitutions induces an isomorphism of varieties. Indeed, by [Mill7,
Prop. 6.20, pg. 138] it suffices to show that they are described by homogeneous polynomials in
each component and so is their inverse. Clearly both of these requirements are satisfied.

The converse converse, namely that every variety £(a,b) is an elliptic curve is not true in
general, but can easily be recovered as in the following

Theorem 1.1 (Existence of the reduced Weierstrass form [Mil06, Th. 1.2(a), pg. 50]). Let k be
a field with characteristic char(k) # 2,3. Every elliptic curve E over k is isomorphic to some
E(a,b) and conversely every £(a,b) is an elliptic curve if 4a + 27b2 # 0.

The expression 4a3+27b? is the discriminant of the depressed cubic X3+a X +b and so the condition
4a3+27b? # 0 essentially enforces regularity of the curve: it requires the cubic X3 +aX +b to have
distinct roots and ensures that the curve has no singularities (geometrically described as cusps)
in the plane {Z = 1}.

Our initial goal was to find a way to describe elliptic curves (up to isomorphism) which allow us
to compute attached constants like the j-invariant, or the discriminant A directly from coefficients
of the equation. Unfortunately, the Weierstrass reduced form of an elliptic curve is not unique,
and so any definition of 7, A based on the coefficients of the reduced Weierstrass form would a
priort not be well-defined.

The following theorem describes the in what sense the representation is unige.

rrueger@ethz.ch — n.ethz.ch/~rrueger 3

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Theorem 1.2 (Uniqueness of the reduced Weierstrass form [Mil06, Th. 1.2(b), pg. 50]). Let k
be a field with characteristic char(k) # 2,3. For mon-zero u in k, the map ¢(u): E(a,b) —

2z :u "3y z) is an tsomorphism of abelian varieties. Conversely,

E(uta,ubd);(z:y:2) — (u~
if : E(a,b) — E(a',b') is a group-law preserving isomorphism, then ¢ = ¢(u) for some non-
zero u 1n k. Consequently, £(a,b),E(a’,b") are isomorphic as abelian varieties if and only if

a' = ua,b = ub for some non-zero u in k.

An immediate consequence of this theorem, is that the definition of the j-invariant

() (60,) = 172842
pry a pry —_—
J AN 403 + 27b2

of an elliptic curve E = £(a,b) is good. Indeed, if E =~ £(a,b) = £(a’, '), then a’ = ua,b’ = ubb
for u non-zero in k and

(4a)3 u12(4a)3 a
= 1728 = 1728

(E(a,b)) = 1728 ——2—— 240+ 27?
j(&(a,b)) 203 1 275 4u203 + 27u1%p? 4(4a") + 276"

7(&(a’,0").

This theorem also shows how we can extend the notion of isomorphism. We continue to say that
two elliptic curves defined over k (that is, cut out from Pi) are isomorphic over k, if there is a map
(z:y:2)+— (uz:udy:z) with u non-zero in k; we say that the curves (still defined over k) are
isomorphic over k if there exists a non-zero w in k so that E — E'; (z:y:2)— (w2 :wdy:2)
is an isomorphism. Milne gives a concrete example in [Mil06, Rem. 2.2, pg. 52]. For c in k not a

square, the curve
Y27 = X3 +¢2XZ% +c3Z% is not isomorphic to Y?2Z = X3 + XZ2 4 Z3

because the desired isomorphism ¢(c'/?): £(1,1) — &(c?,¢®) = (z:y : 2) — (¢!

z:c 3%y 2)
does not exist over k (if c is not a square k does not contain c!/2). It does, however, exist over k.

This inspires the easy

Lemma 1.3. Let k be a field with characteristic k # 2,3. Two elliptic curves E,E' are
isomorphic over k if and only if 3(B) = J(E").

The necessity is clear from our definition, namely j(E) % j(£(a,b)) where E =~ &£(a,b). For
sufficiency, we separate the cases 7(£) = 0 and j(E) # 0. Let E =~ &(a,b) and E' = &(a’,b').
If j(F) = 7(£') =0thena =a =0 and E = £(0,b),E" = £(0,b'). These curves are clearly
isomorphic via ¢((b'/b)Y/2). If j(E) # 0, a # 0 and a similar method works. The isomorphism
o((a'/a)V/*) sends E(a,b) to E(a’, (a'/a)?/?b). Writing b” = (a’/a)?/?b we note that j(£(a,b)) =
7(E(a',b")) = j(E(a’,b")). The last equality tells us, that " = +b' and by choosing u = (+a’'/a)'/4
appropriately, we obtain ¢(u): £(a,b) — E(a’,b") = £(a’, V).

Finally, we will transform the reduced Weierstrass form one more time, for future convenience.
Again k is a field with char(k) # 2,3. Replacing Y with 2Y in (1.2) we obtain the equation
Y27 = 4X3 4 4aXZ? + 4bz3. If we write A = —4a, B = —4b, we have ZY? = 4X3 - AXZ? - BZ3
and the condition 4a3 + 27b? # 0 becomes A3 — 27B? # 0. We will use the notation E(a,b) to
denote the projective variety cut out by Y2Z = 4X3 + aX + b. We note that Theorem 1.2 still
applies with the same conditions on curves described by E(a,b).

We summarise this section in the following

rrueger@ethz.ch — n.ethz.ch/~rrueger 4

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Theorem 1.4 (Representations of elliptic curves). Let k be a field with characteristic char(k) #
2,3. Let u be non-zero in k. Here, isomorphisms are in the category of abelian varieties. Let
E(a,b) be the projective variety cut out from IP’% by ZY? = 4X3 —aXZ? —bZ3 then

(i) Every elliptic curve is isomorphic to some E(a,b).

(1) E(a,b) is an elliptic curve if and only if a® — 27b% # 0.

(111) ¢: E(a,b) — E(a',b') is an isomorphism if and only if o = (z:y : z) — (u?z : u3y : 2).

(iv) The elliptic curves E(a,b), E(a’,b') are isomorphic if and only if a’ = ua,b’ = ubb.

In other words we have the bijection of sets
{Elliptic curves over k}/isomorphism
~{E(a,b) | a,b € k,a® - 27b> # O}/{E(a,b) ~ E(u*a,u%) | u € k\{0}}
~{(a,b) € k? | a® — 270> # 0}/{(a,b) ~ (u%a,ub) | u € k\{0}}

This byection 1s explicitly described by the linear transformations illustrated in this section.

1.2 Elliptic curves and Lattices

The content of Theorem 1.4 allows us to show that any elliptic curve is isomorphic as a group the
quotient C/(for a lattice {2 uniquely determined by E in relatively few steps. In other words
elliptic curves are in bijection with the lattices in C.

We recall that a lattice 2 C C is a free Z-module generated by an R-basis of C. That is, a
lattice is of the form 2 = Zw; + Zwy where wq, w, are an R-basis of C. The quotient group C/ is
also called a complex torus and can be understood as a complex manifold. It is well known that
the Eisenstein series of weight k > 2 for the lattice {2

G(2)=> wF

w€ef?

w#0
converges. From this, we define the Weterstrass invariants go(£2) = 60G4({2) and g3(2) =
140G4(£2) of the lattice 2. These are invariants in the following sense.

Theorem 1.5 (Uniformisation Theorem).
(x) [KKO07, Cor. F, pg. 39] Every lattice {2 C C depends only on its Weterstrass invariants.

(wt) [KKO07, Cor. on pg. 56] The complex numbers a,b are the Weterstrass invariants go(2), 93(£2)
of a lattice 2 ¢ C if and only if a® — 27b% # 0.

This means we can unambiguously write {2(a,b) for the lattice corresponding to the Weierstrass
invariants a, b for every complex a,b with a® — 272 # 0. We immediately get the bijection
{E(a,b)/(C | a,b e C,a%—270% # 0} — {.Q(a,b) cCla,becC,ad—270% # O}
E(a,b) — 2(a,b).

rrueger@ethz.ch — n.ethz.ch/~rrueger 5

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Since the F(a,b)/C are (not necessarily different) representatives of isomorphism classes of elliptic
curves (over C), we expect to extend this bijection somehow to a bijection between isomorphism
classes of elliptic curves (over C) and lattices up to a yet to be determined relation.

We note that the Weierstrass invariants are homogeneous of degree —4 and —6 respectively.
That is, for {2 a lattice in C and A a non-zero scalar in C we have Gy(A2) = A*G(2) and so
9(A02) = A7%g5(£2), 93(A2) = A %g3(£2). We call two lattices 2,2 homothetic if 2' = A§2 for
some (non-zero) A in C. So using the uniqueness provided by the uniformisation theorem, we
conclude that two lattices are {2, {2’ homothetic if and only if their Weierstrass invariants satisfy
92(2) = A%g,(£2"), 93(£2) = A®(£2") for some non-zero A in C.

This insight gives us the important

Theorem 1.6. The set of elliptic curves over C up to isomorphism s in byjection to the
lattices 2 € C up to homothety via the map
{Elliptic curves over C} /isomorphism — {Lattices 2 c C} /homothety
[E(a,b)] — [£2(a,b)]

In fact, together with the meromorphic Wezierstrass gp-function
1 1

we can go further to show that

Lemma 1.7 ([KKO07, Satz on pg. 64]). Given complex numbers a,b satisfying a3 — 27b% # 0 we

obtain an tsomorphism of groups
C/2(a,b) = B(a,b) 2= (pa@p)(2) : ©hey(2): 1) (1.3)

where (2(a,b) 1s the lattice corresponding to the Weierstrass invariants a,b and 0 in C/Q(a, b)
15 sent to the point at infinity O.

A key ingredient in the proof is that the Weierstrass g-function satisfies the differential equation
2 2
po(2)” = 4po(2)” — 92(2)pa(z) — 93(12)

Some authors use more delicate language to phrase this correspondence as one of equivalent cate-
gories, for instance [Sut21, Lecture 17] and [Sil09, Th. 5.3, pg. 175].

It is an immediate consequence of the lemma, is that we can also attach the same j-invariant
to a lattice £2(a,b) with the same formula

3
3(2(a,b)) = 1728~ (4a) — j(B(a,b)).

ad + 27b2
We also obtain a further immediate
Corollary 1.8 (of Lemma 1.3). Two lattices 2,82' in C are homothetic if and only if j(2) =
7(£2").
If 2 = Af2' then it is clear that j(£2) = j(£2'). Conversely, if 7(£2) = 7(£2') set E = E(g5(£2), 93(£2))
and E' = E(g9(£2'), g3(£2")). Then j(E) = j(E'), so by Lemma 1.3 E =~ E' and (2, {2’ are homothetic
by Theorem 1.6.

rrueger@ethz.ch — n.ethz.ch/~rrueger 6

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

1.3 Interlude: Lattice representations and modularity of the j-invariant

Finally, before we move on, we make a short remark on the representation of homethety classes of
lattices and how SL,(Z)\H is a moduli space for the space of elliptic curves.

We defined a lattice in C to be a free Z-module of the form 2 = Zw; + Zwy € C with w;, w, an
R-basis of C. This means T = w;/w, is not real and we may assume, by replacing w; with —w; if
necessary, that Im(z) > 0, that is, 7 lies in the complex upper-half plane H. Note that exchanging
w; with —w; does not change the lattice 2. Consequently, we can write 2 = w5 (Zt + Z) and
conclude that every homothety class of lattices in C can be represented by a 7 in H with the lattice
7t + 7.

Recalling the GL,(R)-action on C, we also obtain the following

Lemma 1.9. The lattices 2 = Zt + 7 and ' = Zt' + 7 with 7,7’ in H are homothetic if and
only if T =yt for some y in SLy(Z).

Indeed, if 7/ =yt and vy = (a, b;¢c,d) in SLy(Z), then

at+b
7t +7 =7 + Z
ct+b

= (ct +b) ' (Z(atT + b) + Z(cT + d))

= (ct +b) ' ((Za + Zc)T + (Zb + Zd))

= (ct+b) ' (Zr +7)
where the penultimate equality holds because a,c and b,d are coprime. Conversely, suppose
Zt' + 7 = A(Zt + Z) = ZAt + ZA for some A in C. Then there exist integers a,b,c,d so that
7" = aAt + bA and 1 = cAt + Ad. Forming the matrix y = (a,b;c,d) we obtain v = yt by

substitution. By symmetry we also have 6§ = (e, f;g,h) with integral entries, At = et’ + f,
A =gt + hand t = 67'. In matrix form, we can write this as

a b\ (At T’ at+b e f\ (7 AT et + f
= T =yT = and = ,T=01" = .
c d A 1 ct+d g h 1 A gt'+h

So if we write y6 = (7, k;l, m), then

. k ! !
J A so Ji'+k=17v and I'+m=1
I m 1 1

since {2’ is a lattice by assumption, 7’,1 is an R-basis of C and in particular linearly independent

over R. Consequently, 7 =1,k =0 and [=0, m = 1. In other words, y, 6 invertible over Z and so
det(y), det(6) = +1. Finally, note that

. at+b Im((at +b)(ct +d)) Im(bcT +adt) det(y)Im(r)
Im(7") = Im(y7t) = Im = 5 = s = 5
cT+d let + d| lct +d| let + d

Since t' =yt lies in H, we conclude that det(y) > 0, so det(y) =1 and vy lies in SLy(Z).
Representing a lattice 2 = Zw; + Zwy by 2 = wy(Zw1/wy + Z) with T = w1 /wy in H illustrates

how the j-invariant and the Eisenstein series can be expressed as functions H — C by sending

T +— j(Zt + Z) and v — Gg(Zt + Z). Moreover, the statement on homothety shows that the

rrueger@ethz.ch — n.ethz.ch/~rrueger 7

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

j-invariant and Gj, are weakly modular of weight 1 and & respectively. Indeed
3(rt) = §(Zyt + 2) = §((ct + d) N (Zr + 2)) = j(Z1 + Z) = §(r)
Gi(v7) = Gp(Zyt + Z) = Gy((ct + d) '(Zt + 7)) = (ct + d)*Cy(Zt + Z) = (ct + d)*C(7).

Here we are switching between viewing 7, G}, as functions of lattices and as functions on H.
Moreover, we see that the j-function is injective up to the SLy(Z) action. Indeed, j(7) = j(1')
if and only if Zt 4+ Z and Zt' + Z are homothetic by Corollary 1.8, which they are if and only
if ©' = yt for y in SLy(Z) by Lemma 1.9. Conversely, it is well-known that the j-function is
surjective [KKO07, Satz C, pg. 55].
This yields what is known as a moduli space. The space SL,(Z)\H parametrises the space of
elliptic curves up to isomorphism.

1.4 Classification of Endomorphisms of Elliptic Curves I

If we view E(a,b)/C in the plane {Z = 1} = C?, we see that the map (1.3) is a biholomorphic map.
Silverman formalises this idea in [Sil09, Prop. 5.2, pg. 174] when proving a categorical equivalence
between complex tori and elliptic curves over C. This means every endomorphism of an elliptic
curve F =~ E(a,b) induces an endomorphism on the corresponding complex torus C/(where
2 = 2(a,b). More precisely, every endomorphism £ — E induces a holomorphic additive group
morphism ¢: C/ — C/0.

Let us study these maps. Since C is simply connected, we can lift ¢ to a holomorphic map
&: C — C which commutes with the quotient map n: C — C/(in the usual way 1 o ® = 1 o ¢.
Since ¢ is a group morphism ¢(0) = 0, so $(0) lies in {2 and without loss of generality we choose
$(0) = 0. For every w in (2 the image of the map z — $(z + w) — $(z) is contained in (2. Indeed,
1o(P(z+w)—B(2)) = o(n(z+w))—e(r(z)) = 1(0). So, because {2 is discrete and C connected we
conclude that z — $(z+w)—H(2) is constant for all w and ¢'(z+w) = &'(z) for all zin C and w in
2. As such, ' is an entire holomorphic elliptic function and so constant. Indeed, as a continuous
(holomorphic) function it is bounded the closure of any fundamental parallelogram; because it is
elliptic, its behaviour on all of C is described by its behaviour on a fundamental parallelogram,;
and Liouville's theorem on bounded functions tells us that bounded entire functions are constant.
Therefore $(z) = az + B. However, since we chose ¢(0) = 0, we know 8 = 0, so $(z) = az and
o(n(2)) = n(az).

Conversely, the map $(z) = az induces an endomorphism on C/ if $(2) = a2 C 2. Indeed,
the map is well-defined and surely a group morphism.

In summary, for an elliptic curve E/C = E(a, b) we have the bijection

End.piiptic curves (&)

= Endcomplex tori ((C/ 2(a, b))

=~ {(pa: C/2(a,b) = C/0(a,b)in(2) = n(az) | « € C,af2(a,b) C Q(a,b)}

=~ {aeC| a2(a,db) c 2(a,b)}. (1.4)

In fact, since the relationship between curves and lattices is functorial, this is an isomorphism of
rings induced by (1.3). The second isomorphism is also one of rings via the obvious map. We note

rrueger@ethz.ch — n.ethz.ch/~rrueger 8

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

that (1.4) does not depend on the choice of representative E(a,b) of the isomorphism class of E.
Indeed, if we chose E(a’,b') = E(a,b), then the lattices 2 = 2(a,b), 2' = 2(a’, ') are homothetic
2 = A2" and the rings

{aeClaR c2}={aecClaAR cA2}={aeC | a2 c 2} (1.5)

are equal. Moreover, in light of (1.4) we write End(2) = {« € C | af2 C 2} for every lattice
2 cC.

We now want to classify the endomorphisms of an elliptic curve over C. Let E/C = E(a,b) be
an elliptic curve and 2 = 2(a, b) a corresponding lattice.

We first understand that End(E) contains a subring isomorphic to Z. Indeed, since (2 is a
lattice it is a Z-module and a(2 C {2 holds for every integer o and so yields a well-defined map ¢,,.
Moreover, the identification Z — End(Z) sending « — ¢, is injective. Suppose ¢, = ¢g, then the
image of d: z — (a —)z lies in (2 for all z which in turn holds if and only if d is constant because
{2 is discrete, C connected and d continuous. Clearly d is only constant when o = .

Now suppose « is a non-integer element of End(E). Let 2(a,b) = Zw, + Zw, with 7 = w1 /wy
in H. Then there exist integers k,l, m,n so that

aw; = kw; +lwy and awy =mw; +nwy, so at=kt+! and o =mt+n.
Solving for t and « respectively, we garner
mtl+(n—k)t—1=0 and o&?—(k+n)a+kn—ml=0. (1.6)

We immediately note that if Z ¢ End(F), then (2 is homothetic to Zt + Z with an algebraic .
Or framed in the contrapositive, if {2(a,b) is homothetic to Zr + Z with t transcendental, then
End(E) = Z.

To understand what this means for the structure of the endomorphism ring, we perform a short
detour.

1.5 Interlude: Orders in Quadratic Number Fields

Let k be a number field, that is a finite separable (and therefore algebraic) extension of Q. If the
extension k/Q is of degree 2, we call k a quadratic number field. We define its ring of integers
Oy, to be the integral closure of Z C k.

From our study of endomorphisms of elliptic curves, we are primarily interested in imaginary
quadratic number fields, that is number fields of the form Q(\/E) for D < 0 a squarefree integer.
We note that this is not particularly restricting: every quadratic number field is of the form Q(\/I_D)
for a unique squarefree integer D not 0,1. More formally stated, the quadratic number fields are
exactly the splitting field of the polynomials X2 — D for squarefree integers D, not 0,1. If D > 0
we call Q(\/E) a real quadratic number field, else imaginary and we uncanonically choose VD in
(R. The ring of integers of a quadratic number field Q(v/D) is given by [Cox13, Eq. 5.14, pg.92]

d d D ifD=1 (mod4
DIV g dD:{ (mod 4)

Op = Z|wp] =Z + Zwp where wp =
4D else.

is called the discriminant of k.

rrueger@ethz.ch — n.ethz.ch/~rrueger 9

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

An order of a number field & is a subring O, finitely generated as a Z-module by a Q-basis of
k. Equivalently, it is a subring with O ® Q = k. If k is quadratic (not necessarily imaginary), we
can classify the orders rather compactly in the following

Theorem 1.10 (Classification of orders in quadratic number fields [Sut21, Th. 13.27]). The
orders in Q(\/ﬁ) are precisely the rings O = Z + fOp with f a positive integer called the
conductor and is equal to the indez [O : Op|.

Importantly, the ring of integers Op =Z + 1 - Op of Q(\/B) is the unique maximal order and so
the index [O : Op| makes sense. Together with our description of the ring of integers, this means
we may write any order © in Q(v/D) as

An immediate consequence is that any non-integer element o = a + bwp of Op generates an order
O =Z|a] < Op. Indeed,

Zla| =Z+ Zo = Z + Z(a + bwp) = Z + bZwp

is an order with conductor |b|. (Our condition that « is not an integer ensures b # 0).

1.6 Classification of Endomorphisms of Elliptic Curves 1II

We continue where we left off, before the interlude on orders.

From Equation 1.6, we see that £ = Q(7) is an imaginary quadratic number field. Indeed, since
7 lies in H, k& # Q; and since t satisfies a polynomial of degree two, k/Q must be an extension
of degree two. Moreover, since Im(t) > 0, we know it must be an imaginary extension. So let us
write Q(t) = Q(v/D) from now on.

We assumed End(F) contained a non-integer element o and showed that it is integral over Z.
Since it is integral and contained in Q(7) = Q(v/D) (because @ = mt +n), we conclude that « lies
in the ring of integers Op of Q(v/D). As such, End(E) contains a subring which is isomorphic to
Z[o] which is an order in Q(v/D). Conversely, because a was an arbitrary non-integer in End(E),
we have shown that End(F) is isomorphic to a subring of Op. More explicitly, we have shown that

End(E) = J{z([8] | B € End(E)} c Op.
With o = a + bwp as before, this gives us the following setup
Z C Zla) =Z + bZwp C End(E) € Op =Z + Zwp
This allows us to show that End(Z) is in fact an order in Op. Indeed,
M={b|a+bwp e End(E),a,b € Z};
is clearly a (principal) ideal of Z and it is non-zero because it contains b # 0. So M = fZ for some
non-zero integer f and End(E) = Z + fZwp is an order.
Hence, we have shown that the endomorphism ring of any elliptic curve over C is (isomorphic

to) either Z or an order in an imaginary quadratic field. This kind of classification can be extended

to elliptic curves over any field k& and is given by

rrueger@ethz.ch — n.ethz.ch/~rrueger 10

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Theorem 1.11 (The Deuring Correspondence [Sil09, Cor. 9.4, p. 102]). Let E be an elliptic
curve defined over a field k of characteristic p. The ring End(E) is tsomorphic to one of the
follourng

(i) (Only if p =0) The integers; or
(1) an order O in a imaginary quadratic field ordinary; or
(w11) (Only if p # 0) a mazimal order in the quaternion algebra ramified at p and co.

If p # 0 and End(E/k) is an order (case (1)), then we call E ordinary, else we call it
supersingular.

1.7 The class-group action on elliptic curves with complex multiplication

We have now established that every elliptic curve F/C has and endomorphism ring End(F) which
is either Z or an order O in an imaginary quadratic number field. Notably, orders are also lattices
and so, when £ =~ E(a,b) has complex multiplication by End(E) = O, we can investigate the
relationship between the lattice 2 = 2(a, b) corresponding to E and the lattice O. In particular,
given an order O we will find all the elliptic curves with complex multiplication by O.

To forgo the additional step of going through elliptic curves, we will phrase elliptic curves only
in terms of lattices and use the notation End(2) = {o € C | af2 C 2} as introduced after (1.4).
Moreover, to make the following more precise, for every imaginary quadratic number field Q(\/l—?)
we choose the embedding into C so that vD = (v/—D in (R.

We can reformulate the result of the first paragraph now as follows. We have the map

{Lattices 2 ¢ C} — {Z} U{O | O an order in an imaginary quadratic field}
2+ End(02).

It is invariant under homothety as shown by a computation like (1.5). It is also surjective. The
lattice 2 = Zn + Z has End({2) = Z because = is transcendental and (1.6) showed that End(Z{ +
Z) 2 Z implied that { is algebraic. Else, let O be an order of an imaginary quadratic field. Then
End(O) = O. Indeed, if «O C O, then « lies in O because O contains 1. Conversely, if « is in O
then clearly «O C O because O is in particular a ring.

Finding all elliptic curves with complex multiplication by © is now equivalent to finding all
lattices 2 (up to homothety) with End(2) = O. To that end, let us write 2 = Zr + Z and
O = Z{ + Z. Since O is an order, we know that { is an algebraic integer. Since End({2) = O by
assumption and {2 contains 1, we know that { - 1 lies in {2 and so { = k7 + [for some integers k, .
As such k2 = Zkt + Zk = Z({ — 1) + Zk = Z{ + Z1 is a sublattice of index k. Moreover, because
O is the endomorphism ring of {2 we have O C {2 and in particular Ok{2 C k(2. Hence k{2 c O
is an O-ideal. To summarise, if {2 has End(§2) = O, then (2 is homothetic to an ideal of O.

The converse is not necessarily true. That is, if ¥ C O is an ideal, then End(¥) must not
necessarily be O. It certainly contains O because ¥ is an O-ideal, but can be also be a superset. In
fact, when O is not maximal, so not the full ring of integers Op, then we can always find a ¥ so that
End(O) = O ¢ End(¥). We construct such a ¥ naively as follows. We know that O =7Z + fZwp
for some positive integer f, so any (additive) subgroup of O can be written as ¥ = kZ + lfZwp

rrueger@ethz.ch — n.ethz.ch/~rrueger 11

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

for some integers k,l. If [= k, then ¥ is homothetic to O and has the same endomorphism ring,
so we assume [# k. If ¥ is also to be an O-ideal we require (a + bwp)(ck + dlfwp) to lie in ¥ for
all integers a, b, c,d. If we set 'w% = A + Bwp this gives us

(a + bwp)(ck + difwp) = ack + bdlfA + (bck + adlf + bdlf B)wp

which lies in ¥ if and only if & | {fA and If | k. An example satisfying this is k = f2,1 = f. We
verify that

End(¥) = End(f?Z + f?Zwp) = End(Z + Zwp) = Op 2 O

as desired. It is worth noting that this example does not work when f2? = f (that is f = 1) and
¥ = O = Op is the maximal order.

We therefore distinguish O-ideals ¥ with End(¥) = O and call these proper O-ideals. We
summarise our discussion in the following. Let O be an order in an imaginary quadratic number
field. The homothety classes of lattices 2 C with End({2) = O are represented by the proper
ideals of ©. That is to say, that up to homothety, there is a bijection of lattices {2 ¢ C with
End(£2) = O and the proper ideals of O.

This can be rephrased in the language of the ideal class group Cl(O) of O©. We briefly recall
the definition of the ideal class group in general. Let A be a domain. A fractional ideal I of
A is a A-submodule of F' = Frac(A) for which there exists an element d so that dI ¢ A. The
product of two fractional ideals is a fractional ideal again. Clearly every principal fractional ideal
I = oA for o in F'is fractional. We say that a fractional ideal I is tnvertible if there exists another
fractional ideal J so that IJ = A. Together with multiplication, the set of invertible fractional
ideals form a group. Evidently, principal fractional ideals are invertible and form a subgroup. We
define the udeal class group Cl(A) of A to be the quotient group of invertible fractional ideals
modulo principal fractional ideals.

The important result for us now is that proper ideals of an order O in a quadratic number field
coincide with invertible fractional ideals of O [Cox13, Prop. 7.4]. Moreover, if two proper O-ideals
¥, ¥’ C O are homothetic ¥/ = A¥, then A = a/b with a,b in O. Indeed, if ¥ = Z¢; + Z¢,, then
Ay lies in ¥’ and so in O again. Therefore A = (A¢7)/(¢1) is a fraction of two elements in O.
Rephrasing this, we see that two homothetic O-ideals ¥, ¥’ satisfy a¥ = b¥’ for a,b in O. This
sets us up to understand how the set of proper O-ideals modulo homothety is exactly the ideal
class group Cl(O).

Indeed, knowing that the proper O-ideals are the invertible fractional ideals of O, we note that
a¥ = b¥' holds true if and only if a/bO = ¥'¥~! which is a principal ideal. Hence two proper
ideals ¥, ¥’ are homothetic if and only if they are equal modulo principal invertible fractional
ideals. Consequently

{proper O-ideals}/ homothety =Zsets C1(O).

Together with what we know about the bijection of proper O-ideals and elliptic curves with
multiplication by O we can now state

Lemma 1.12. Let O be an order in an imaginary quadratic number field. There 1s a bijection
between Ellc(O) the isomorphism classes elliptic curves E/C with complez multiplication by

rrueger@ethz.ch — n.ethz.ch/~rrueger 12

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

O and the ideal class group C1(O). It is given by

Cl(O) — Ello(0) 2(a,b) — E(a,b)
Recall that 2(a,b) is the lattice with Weierstrass tnvariants a,b and E(a,b) ts the elliptic
curve cut out by ZY? = 4X3 —aXZ% —bZ3.

This delivers the important corollary
Corollary 1.13. For any gwen order in an imaginary quadratic field, Ellc(O) is finite.

This bijection shows us how to define a group action of C1(O) acting on Ell-(O). Though, to do
this, we introduce slightly different notation. Namely E, for the elliptic curve E(a, b) corresponding
to the lattice a = 2(a,b). Of course E, = E, for any homothetic lattices a, b, so in particular E,
does not depend on the choice of representative a of any (invertible) fractional ideal @ in Cl(O).

We define the group action
CI(O) X Ell@(@) — Ell(c(O) E, Eb — Eu’lb

It is free and transitive, making Ell-(C) a principal homogeneous space for the action of Cl(O).
Indeed, a - E, = E, 1, = E, can only occur if and only if b,a b are homothetic b = Aa~!b.

However, since b is invertible, this means © = Aa~!

and a is a principal (invertible fractional)
ideal, and so the identity in Cl1(©). In particular, a-FE, = ¢- E, if and only if @ = ¢. Since
|CL(O)| = |Ellc(O)| is finite, this implies the orbit of every element £, must be all of Ell-(O) and
so the action is transitive.

It is conjectured that this group action can be used to construct quantum-secure cryptographic

primitives [DeF17].

1.8 Complex-multiplication points and Binary quadratic forms

We saw in (1.6), that if the elliptic curve corresponding to the lattice Zt + Z has complex multi-
plication, then t in C is algebraic. It turns that the converse is also true. To illustrate this, we
introduce binary quadratic forms.

Let a,b,c be coprime integers gcd(a,b,c) = 1. We call functions of the form Q: Z x Z —
Z;(z,y) — az? + bzy + y primitive binary quadratic forms. We call the number D = b — 4ac
the discriminant of the form @ and denote it by disc(Q). Moreover, we call a (quadratic binary)
form @ positive definite if Q(z,z) > 0 for all integers z. Through direct calculation one can verify
that

4aQ(z,y) = (2az + by)2 — Dy?

and conclude that a form @ with negative discriminant D < 0 is positive definite if and only if
a>0.

Let y = (a,b;c,d) in SLy(Z), then (yQ)(z,y) = Q(az + by,cz + dy) defines a group action
on the set of primitive binary quadratic forms 8, and so an equivalence relation on B. Notably,
it preserves the discriminant of the form, disc(yQ) = disc(Q), and so we can restrict the SLy(7Z)-
action to the set Bp of forms in B with discriminant D.

For D = 2,3 (mod 4) Bp is empty. Indeed, for any form 4% — 4ac = b? (mod 4), and the only
squares modulo 4 are 0, 1. Conversely, if D = 0 (mod 4), then Q(z,y) = =2 — Dy?/4 is a form with

rrueger@ethz.ch — n.ethz.ch/~rrueger 13

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

discriminant D; else if D = 1 (mod 4), then Q(z,y) = 22 + zy — (D — 1)y?/4 has discriminant D.
Thus we call an integer D = 0,1 (mod 4) a fundamental discriminant.

We note that 7 in H satisfying the minimal monic polynomial z2+rz + q with rational numbers
r,q also satisfies the unique polynomial az? + bz + c for coprime integers a,b,c. Since T is not
real, we know that D = b? — 4ac is negative, so ac > 0 and we may assume that a,c > 0 after
multiplying a, b, c by —1 if necessary. So Q.(z,y) = az?+bzy +cy? is a positive definite primitive
binary quadratic form with negative discriminant. It is unique, and so every algebraic number t
in H can be assigned a unique binary quadratic form @, with Q.(r,1) = 0. Conversely, if @ in B
with Q(r,1) =0, then Q = Q;.

Moreover, the SL,(Z) action on H is compatible with that on Bp in the following sense. If
T =7, then Q. = yQ,. Indeed, if Q,(z,y) = Az? + Bzy + C and ¥ = (a,b;c,d) then

V(1) = Qu(at’ + byt + d)
= A(at' 4 b)* + B(at' + b)(ct’ + d)C(ct’ + d)?
= (ct’' 4+ d)f2 (A2 + Bt +C)
= (et +d) "Q(r, 1)
=0

hence yQ, = Q. So we may conclude

Lemma 1.14. There is a byjective correspondence between SLy(Z) classes of algebraic numbers
in H and SLy(Z) classes in Bp.

Before we relate binary quadratic forms to the ideal class group we need one more ingredient.

Let O be an order in an quadratic number field Q(vD). Then © = Z + fZwp for some
positive integer f and we define the discriminant of O as disc(O) = f2dp. Recall that dp is the
field discriminant of Q(v/D). We note that there is only one order © ¢ Q(v/D) with discriminant
disc(O). Since dp = 0,1 (mod 4) non-square, disc(O) is also a non-square disc(O) = 0,1 (mod 4).

Conversely, every D = 0,1 (mod 4) non-square defines an order in an quadratic number field.
Indeed, let D = f2d with d squarefree. We perform a short case distinction. If D = 0 (mod 4), then
f? =0 (mod 4) and we know nothing about d (mod 4). So we perform another case distinction.
If d =1 (mod 4), then dyj = d and Z + fZw, is an order with discriminant f2d; = f?d = D;
else if d £ 1 (mod 4), then dy = 4d and Z + (f/2)Zwy is an order with discriminant (f/2)2dd =
(f2/4)4d = f?d = D. 1f D = 1 (mod 4), then things are easier. Since f2 = 0,1 (mod 4) as a
square, we know d = 0,1 (mod 4) so that f2d = D = 0,1 (mod 4). However, since d is squarefree,
we know d # 0 (mod 4). Hence d = 1 (mod 4) and we proceed as before. The order Z + fZwy
has discriminant f2d; = f%d = D.

We now cite the important result relating binary quadratic forms and the ideal class group

Theorem 1.15 ([Cox13, Th. 7.7, pg. 123]). Let k be a imaginary number field, and O be an
order of discriminant D. Then

Bp/SL,(z) = CHO) [az? + bay + cy?] — Z(—b + VD)/2a + Z

15 byjection.

rrueger@ethz.ch — n.ethz.ch/~rrueger 14

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

In fact, we can turn Bp/ SL,(Z) into a group, called the form class group with the Dirichlet
composition as introduced by Cox in the chapter Composition and the Class Group of [Cox13].
In Zetafunktionen und Quadratische Korper, Zagier gives a similarly explicit isomorphism in
the reverse direction using ideal norms [Zag81, Eq. (15), pg. 92].

We collect all of our results in the following. Let T be an algebraic number in H. This yields a
unique positive definite primitive binary quadratic form Q,(z,y) = az?+ bzy + y? of discriminant
D = b? — 4ac. This in turn yields an invertible fractional ideal ® = Z + Z(—b + v/D)/2a as in
Theorem 1.15. We note that T = (—b + v'D)/2a because Q,(r,1) = 0,Im(7) > 0 and so we may
write the ideal as O = Zt + Z. We know that invertible fractional ideals are proper ideals and so
End(O) = O. As such, Ep is an elliptic curve with complex multiplication by O.

Conversely, for D = 0,1 (mod 4) negative, we call a point {p in H a complez multiplication
point or just CM point, if it is the root of a primitive binary quadratic form with discriminant D.
In other words, if the minimal polynomial with coprime integral coefficients corresponding to {p
has discriminant D.

rrueger@ethz.ch — n.ethz.ch/~rrueger 15

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

2

The Taylor expansion of modular forms

As described in the introduction, we want to find a different way of expressing the Taylor expansion
of a modular form around a point z; in the upper-half complex plane H so that the domain of
definition is the entirety of H. Similarly to the development of the g-expansion of a modular form,
we fix the issue of the domain of definition of the Taylor expansion by first sending the upper
half-plane H to the unit disc D in a way that is somehow compatible with the SL,(C) action on

H. We notice that
1 1 —ZO
T n-m (1 —Z_0>

in SLy(C) is a good candidate. Indeed, 0z,20 = 0 and with z = z + 1y, 290 = 2 + tyg We see that

2 2
(z —z0)" + (¥ — %)

2 2
(z —20)" + (¥ + %)
because y,yg = 0. In other words, p,, homeomorphically sends H to I) whilst centring 2, to zero.

Z— 2

p20z| =

— <1
zZ— 2

However, for compatibility with the notation in [BGHZ04, OR12] we will work with its inverse

o ‘ﬁ‘ p_l _ 1 _% 20
% % z20 — Z_O —1 1 '

Now we define the slash operator as usual
k/2 . —k
(fler)(2) = det()*25(r, 2) " f(r2)

and note that holomorphy of f implies holomorphy of f| k04, on D. Hence f|yo, has a Taylor

expansion at zg = 0 of the form

(F1x02)™ (0)

n!

(f’ko'zo)(z) - Z

n=>0

2" = Z cf(z0,m)2". (2.1)

n>0
We want to translate this Taylor expansion into one that is valid for f on the whole of H. We
begin by investigating
k/2 . —k
(f’ko-ZO)(z) = det (O-Zo) j(o-ZO) z) f(aZOZ)
—\k/2 —k
= (20— %) (=2 + 1) "f(042).

By evaluating at o, 'z = p, z We can reverse this into expressing f(z) as a function of (f|x0,,)(07,'2)
for which we have the Taylor expansion (2.1). More precisely, we first compute

B z— 2y zZ—20—2+2y 29— 2y
—0201z+1:— — + 1= — = —
zZ— 2y Zz—2p zZ— 2y

and obtain
f(2) = (20— Z0) *(—o5tz + 1) (flos)05 2)

= (20— %0)"*(z — 70) " (flko,)(0512)

rrueger@ethz.ch — n.ethz.ch/~rrueger 16

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Substituting the Taylor expansion of f| k02, We find

£(2) = (20— 2) (2~ B) " 3 es(20,m) (. ﬁ)

n>0 220

we call this the Taylor expansion of f at z;.

2.1 Trivial Taylor coefficients

It turns out that, that many of the Taylor coefficients are trivially zero.

Let I" be a subgroup of SLy(R) so that I" < PSLy(R) is Fuchsian. For example I" = SLy(Z) or
any congruence subgroup. Choose zg in H U {cusps} and set I',, < I' as the stabiliser of zy. Then
I',, < PSLy(R) is finite cyclic [Kat92, Cor 2.4.2,pg. 38], say of order N with a generator v .

From the definition of o, , we have that 0, 0 = z5 and 0, 00 = 2. Then ag)lyanzO fixes both
0 and oo. Knowing which points a matrix fixes tells us a lot about the entries of the matrix in
general. The matrix (a,b;c,d) fixes z # —d/c in C if and only if cz? + (d — a)z — b = 0. If the
matrix is real, then it fixes z too. Notably, when z = 0 we have b = 0. Moreover (a, b;c,d) fixes
oo if and only if ¢ = 0. Consequently, we have

_ ¢ 0 _ _
00 Y 2002, = (0 " and ®={"! because det(o,'y,,0,) =1

In fact, by computing the whole product directly, we can verify that { = 3 (YZO,Z_O) =czg +d.
Let v,, = (a,b;c,d), then O'Z_OIYZOO'ZO is

1 1 —z)\ (a b\ (-2 z)| 1 czoZg —azg +dzg—b —czg? —(d —a)zg+b
20—20\1 zg) \c d)\ =1 1) 2z—%Z \ czZg+(d—a)Zg—b —czgZg+azy—dzg+b

. L — 2 —
and since y,, has real entries, it fixes 2; too and we have cz;” + (d — a)zg — b = 0. Moreover, one

can use this equality to verify

CZOZ_O — az_0+ dZO — b

{ =

— =czo+d=7 , 20)-
%0 — Zg 0 I(¥z9r %0)

To summarise, we know that o 'y, 0, = ({,0;0,{ ') with { = j(v,,,%); and the maps H — H
_1 _1— 2
Z 055,042 Z 0,0 ¥505,2 z— (%2

are equal.
Importantly, we may now conclude that {2 is a primitive N-th root of unity. Indeed,

—N.

_ —_— N —
Y, has order N = ‘I’ZO implies that <az—01y20020> = G_Z()*lyz(] 0,, = id in PSL,(C)

hence (O'Z_OIYZOO'ZO)N = +1id in SLy(C) and so acts trivially. As such, we know that z +— %"z must

be the identity, which is the case only if 2" = 1; so we conclude that ¢? is an N-th root of unity.

It is primitive, because

. 2 M R M ey . —M ke

if ()" =1, then (cZO yzOGZO) = id, equivalently ¥, = id and so M > N.
Consequently we may write {? = e(m/N) with gcd(m,N) = 1.

Writing the Taylor expansion 2.1 polar coordinates we obtain f |0, (re(0)) = 3., _, ¢z (f, n)r"e(0).
Here we used the usual notation e(f) = exp(2n:6). Using a change of coordinates ¢: D —

rrueger@ethz.ch — n.ethz.ch/~rrueger 17

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

D; (6, 7) + re() we obtain the 1-periodic function f|io,, o ¢. This has a Fourier expansion

1
(f]kaO o go) (0 +tr) = flroy,(re(8)) = Z ane(nf) where a, - /O (flxoz 0 ©)(8 + tr)e(—nB)d 6.

nez
Since f is of weight k and v, lies in I', we have
CFfk020(022) = 3051200200 2) F1k020 (051 20022)
= flk02 k02 Y 2002, (2)
= flkY202(2)
= fleYzlk02,(2)
= flr0z(2)
and with {? = e(m/N) = ey(m), equivalently { = e(m/(2N)) = eyn(m), we have

1
an = [(42,0 9)(0 + ir)e(~n6) 8
0
1
= [flion(re(@)e(-ns)as
0
1
= [¢ o, (&re(@))e(-n0)ao
0

— ean(mk) [flios,(re(® + m/N))e(-n6)do
0

m/N+1

VI k) [T fluo(re(@le(—ng -+ nm/N))d g

m/N
1
= ean(mb)e(nm/N) [Sluos, (re@)e(—n4) a4
= eon(mk + 2nm)a,.
Therefore, when
eon(mk + 2nm) #1 which holds if and only if g +n#0 (modN) becausegecd(m,N)=1

we must have a,, = 0. In other words, a,, = 0 unless n = k/2 (mod N). Since k and N are
constants, depending on f and z; respectively, we see this imposes a periodicity condition on the
Q-

We summarise this section in the following

Lemma 2.1. Let f be a modular form of weight k and level I'. Let z5 be a point in the
upper-half complezr plane H whose stabiliser I', < I' has order N when viewed inside PSLy(Z).
The coefficients cf(z9,n) wn the Taylor ezpansion f|xo, (2) = 3, _,cf(20,n)2"™ of f are zero
when n # k/2 (mod N).

rrueger@ethz.ch — n.ethz.ch/~rrueger 18

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

2.2 Non-trivial Taylor coefficients

Our goal is now to understand the c¢(2g,n) from (2.1) better. By definition, we know that

1 —\k

es(zm) = 200 [(Fleo)(2)]_, = (20— 770 (2 + 1) Fi(0,2)]

z=0
Now instead of manually computing the derivatives, we use the following idea from [[O08, Prop. 16].
Since f is holomorphic in a neighbourhood of z; we have the usual Taylor expansion

(n) 2
IO g A COTRL

n!

(O-Z()'z - ZO)n-

> c(z0,m)2" = (20 — 70) P~z +1)7" >

n=>0 n>0

After doing some quick algebraic housekeeping

o 72 _—z_oz—i—zo_z _ —Zgz+zo+2zz9— 20 2(20 — Zp)
S P 0~ —z+1 Tz 41
we write
() (2 % B
S sz men = 3L (g (22)
n=>0 n=>0 n:

Now of course we would like to compare coefficients to express cs(2,n) as a function of f (”)(zo).

To do this, we must understand 2"(—z + 1)n+k. Formally, we know that
1 1 J Jj—1+n
= > 2" hence (> = > | = . s
-2+l 15 —z+1 n>0 n>0 7—1

The last equality is an exercise in combinatorics and is easily proven using the stars-and-bars
method: for every exponent z™ = z--- z we must count the number of ways that we can choose a
total of n objects from 7 brackets. Writing down

| x| % || x%| x with (7 —1) bars and n stars

gives us such a configuration; evidently there are (7 — 1 + n) choose (5 — 1) ways of writing these
configurations down.
Applying this to our coefficient comparison equation (2.2) we obtain

) n +k—-1+1
Z cf(zo,m)2" = Z fn—(|20)(z0 _Z—O)k/2+ Z (n)Zl+n

n=>0 n>0 : >0 n+k—1

rrueger@ethz.ch — n.ethz.ch/~rrueger 19

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

and so

(s) sfs+k—1+
i) = ¥ Lo g ()

s+r=n r+k—1
" £ (zg) — ks tEk—1
= — (20— %)
- s s+k—1
n (k=1 (20— 7)" 0" (s)
- B0 20) £6)(z).
o \stk-—1 s!

The rearrangement in the final equality is to illustrate that up to some easily computed factors,
we really have written the Taylor coefficients as a function of the derivatives.
For safe keeping we enshrine this as a numbered equation

n <n+ k — 1> (2o —z_o)k/2+s

ci(n,zo) =y ko1 X 79 (20). (2.3)

s=0

Since computing the derivative of a modular form is in general unwieldy (without already

knowing the Fourier coefficients), we now develop a method for computing the derivatives recur-
sively.

2.3 Computing derivatives of modular forms with recursive methods

As discussed in Chapter 5 of [BGHZ04], the usual derivative D = (9, —t9,)/2 preserves holomorphy
but not modularity. Writing a modular form in its g-expansion f = ag + a;q + asq? + -+ we see
that Df = 2mt(aq + ayq + azg® + --+). To keep algebraicity properties of the Fourier coefficients a;
we will work with D = D/(2rnt). We will also write f' for Df

Nevertheless, D still does not preserve modularity. This can be remedied in different ways.
One way, is to introduce the Serre derivative 9,

k
My(I') = Myyo(I') f— Df — EEzf-

It preserves both modularity and holomorphy, but not the weight. Another way to preserve
modularity, is via the Mass raising operator Oy on the space M} of meromorphic functions that
transform like modular forms of weight &
k
M]:(]_')—>M:+2 fHDf—gyf(z)
It clearly does not preserve holomorphy. For both the Serre derivative 6, and the Maass raising
operator 0, we will drop the subscripts where convenient.
Two inductive arguments show that we can express 0 and D by sums of each other

onf =y (-l (k e 1) B
s=0

st\k+s—1) (4ny)"°
" nl(k+n-—1 1
and D"f = — ——0° 2.4
! s;)s!<l<:+s—1)(47ry)ns ! (24)

where is defined 0™ = 0y 9,0k 2(n—1) *** O and D" analogously.
In [ZV, Eq. 35; BGHZ04, Ch. 5.2] Zagier and Villegas introduce and motivate the recursively

rrueger@ethz.ch — n.ethz.ch/~rrueger 20

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

defined modified Serre derivative

oO() = £, 0I5 = 6(s), 61U(F) = 0(B(1)) — m(k + 0 — 1) Tl ()

where k is the weight of the modular form f. Moreover, we obtain

"nl(n+k— nes
an:Z::(+ 1) (%) 8151) (2.5)

=0 s+k—-1

which using the relations above (2.4) can be written as

T N (” e 1) (3) e (25)

s0S'\s+tk—1
as in [OR12, Eq. 4.3] where Ej = E,(z) — 3/my is the modular Eisenstein series of weight 2. These

formulations (2.5), (2.6) illustrate how the derivatives D™, 0™ can be very convenient functions of
glrl (f) when evaluated at zeros of E,, E; respectively.

We can clean up (2.4) for comparison with (2.3). Using z —z = 2ty and D*f = (2r¢) " f(® we
obtain

n+k— 20 —2z0)°
o (e0) = (2n) "nl(z0~T) "L (e 11> Go %) gtaz)

which, when compared with (2.3), yields
(2me)"

¢5(ny20) = (20 — %0)" 70" f (20) (2.7)
_ @) ! (nb k1) (EINTT
= (R~ #) ;O s! <s+k—1> (12)). (28)

Consequently we have reduced computing the Fourier coefficients to evaluating the modified Serre
derivative.

Before we continue to computing 6" (f) we make some notes about 6 itself. We are primarily
interested in the j-function 7 = E43 /A and so we collect some easy results.

Lemma 2.2. 6 is zero on Sq,.

Proof. Since 0: S, — Sy 5 and Sy, = 0, we know that 6(f) = 0 for all f in S;5. We note that this
is equivalent to proving by manual computation that 8(A) = 0, since S;5 = CA. O

Lemma 2.3. The Serre Deriwative 6 is a derwation. That 1s, it satisfies the Leibniz rule.

Proof. We simply compute
1 1
—0(fg) = (gRaQ + EQZGR) (fg)
1 1
= gRaQ(fg) + §Q203(f9)

= 3R (30()g + F00(9)) + 50° (3r()g + F2r(s))

3
= 96(f) + f6(9)

— 9 (5Ro0l) + 30°0a()) + 1 (3RS00(a) + 3°F0n(5)

rrueger@ethz.ch — n.ethz.ch/~rrueger 21

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Corollary 2.4. Let f lze in S;5. Then

0(f9) = f0la) ana 0(%) = 2000
for any g in any M.

Proof. The first equality holds because 6 is a derivation and 6(f) = 0. For the second we compute

() (omeion))

= 5 (3R (ol0)r — 90() + 5Q%xl0)f - 328(1)))
— =5 (78(9) - 96(1))
=—=6(9)

2.4 Computing the recursions

In this section we write R = F4 and @ = Rg.
It is well-known that Mj, is linearly generated by the monomials R*Q® where k = 4a + 6b. As
such, we can formally write

QaRb _ Qk/473b/2Rb _ Qk/4(Q73/2R)b or QaRb _ QaRk/6f2a/3 _ Rk/6(QR72/3)a

and any element f in M}, can be expressed as

k k

b a

f= % @R =QF1 Y cop(@VR) = RMO Y e (QRT)
b=0 a=0

4a+6b=k

In other words, for every f in M}, there exist univariate polynomials g, in C[t] so that
f=QF*r(Q*?R) and f=RFC°(QR™?/%);
and writing T for QR~%/% and § for Q%/2R we get the more succinct
f=Q"4(S) and f=R*Sq(T). (2.9)

Each of these equalities holds everywhere except at roots of @ and R respectively. However,
since R and @ do not share any roots, we can guarantee the existence of at least one such represen-
tation the neighbourhood of any point 2 in H. We also note that the coefficients ¢, , expressing
f as a linear combination of Q?R? terms are the same of the arising polynomials 7,q. Hence if all
Cq,p are integral, then 7, g are in fact elements of Z[t].

At this point we warn the reader. We Since we have these two different representations we will
need to compute many expressions twice, once for each representation

Since our goal is to understand gln] (f) in My, o, we can try to express the complicated recursion

rrueger@ethz.ch — n.ethz.ch/~rrueger 22

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

defining 0l as a simpler recursion in some univariate polynomials. More precisely, if we write

olrl(f) = QUer2m)/4r, () = RIF2M/5q,,(T) (2.10)
we might obtain a recursion in 7, and g,, that is easier to compute or understand.
Since
I+ (f) = B(6(£)) — (i + k — 1) =6 f)
1
= 0(Q¥ 2/ 41, ()) =l + k — 1) 77 QD 4, y(5)
n Q n—
= O(R(H2/5q,(T) — n(n + k — 1) - RE+2-2/og, y(T)
we must first compute
(RF+2M)/5g,(T)) and 6(QH2")/%r,(S)).
To that end we first compute with the monomial m;(t) = ¢
aQ(ml(T)) _ aQ(QZR—Zl/3) _ lQl_lR_2l/3 — ZR—2/3QZ—1R—2(I—1)/3
= R~/my(T)
Or(my(T)) = dr(Q'R™2/3)
_ 2 —21/3—-1
=3 Q'R
_ —%ZQRB/SQllR2(l1)/3
2
= —ER%QR*?/%;(T)
2
= —ngleg(T)
do(my(8)) = 9g(Q*/RY)
_ 8 —31/2-1pl
=-3 Q R
— _%ZRQS/2Q3(ZI)/2RZ1
3
= —ZRQmi(8)
3
= —5Q 'Smi(S)
aR(ml(S)) — aR(Q—SZ/2RZ) — ZQ—SZ/2RZ—1 — lQ—3/2Q—3l/2Rl—1
= Q*/2mi(s)
Consequently
2
00(an(T)) = B~*°q,(T) and Op(gn(T)) = —3 R 'Tay(T);
3
9(7n(S)) = —5Q STn(S) and OR(ra(S)) = Q~%/2ry(S).
rrueger@ethz.ch — n.ethz.ch/~rrueger 23

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Now we compute

Y (R(k+2n)/6qn(T))
1 1
= <§R5Q + §Q20R> (RET2m)/6q, (T'))

— GRRKI0000,(T) + 307 gk + 2RI 27 9/og,(T) + RS0 (gy (7))

1 1 1 2
_ ER(k+2n+2)/6q;z(T) 4 _Q2 |:—(k: + 2n)R(k+2n—6)/6qn(T) _ gR(k+2n_6)/6Tq,'~b(T):|

_ p(k+2n-6)/6 (334/3 (T + Q2 {1(k +2n)q,(T) - gT%(T)D

_ Rlk+2n-6)/6 [1_12(k+2n) 20n(T) + % (R“/3 QZT)%(T)]

to obtain
1
G (f) = RIE2-9/0 | 2 QP — RY%) g(T) — 5 (k + 2n)Q0,(T)
@ e
—n(n+k— 1)mR(k+2 2/8q, 1(T)
Finally substitute 6(*+1(f) = R(E+2n+2)/6p (T to obtain
pn+1(T)
—as3| L2 4/3 1 2 Q o3
= B2 2 (QPT = R*P) qn(T) — T (k +20)Q%qn(T) | = n(n +k — 1)1 2R 20, 4(T)

e —R” Z/Sanl (T)

1 1
=3 (Q*R™*/3T — 1) q)(T) — E(l~c +2n)Q2R 43¢, (T) —n(n+ k — 1)— ™

1 1
= 3 (T9 1) G(T) — 25 (k + 30)T%,(T) — n(n + k — 1)~ Tagq,(T)
We now perform exactly the same computations on r,,.

_9 (Q(k+2n)/4rn(s))
~ (3Rog+ 3@%0n) (@), (5))
_ %R E(k +2n)QUH2n—4 /4, (5) — 2 (krem)/tQ =15 (S)]
n %QzQ(k+2n)/4Q—3/2,r/ (S)
— %3 E(k +2n)QU /4y, (5) — QU an—/Agy, (Sﬂ
4 %Q(k+2n+2)/4,r;b(s)
— QUe+2n—4)/4 (%R F(k +2n)r,(S) — §Sr;L(S)] + le/ %(S))

=Q<k+2n4>/4[(k + 2n)Br,(S) + £ (@2~ RS) (S)}

rrueger@ethz.ch — n.ethz.ch/~rrueger

24

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Then
1 1
pintil(f) = QUk+2n—4)/4 5 (RS - Q3/2) 1 (S) — 750 +2n)Brn(S)

1
—n(n+k— 1)mQ(k+2n+2)/47‘n—1(S)

Finally substitute 6(*+1(f) = Qk+27+2)/4p 1 (8) to obtain

7”n-i—l(’s)

= Q32 é (RS - Q3/2) rn(S) — 1—12(k +2n)Rr,(S)| —n(n+k — 1)&7%,1(3)
1 1 1

=3 (Q%2RS — 1) ri(S) — E(k: +2n)Q%2Rr,(S) — n(n + k — 1)mrn_1(5)
1 1 1

=3 (82 —1) i (S) — ﬁ(k +2n)Sr,(S) —n(n+k — 1)mrn,1(8)

These recursions can be given integral coefficients, by replacing Q,, = 12"q,, and R,, = 12"r,,.
Indeed

Qni1(T) = 12"y 14 (T)
= 4(T° - 1)(12"q5(T'))
— (k +2n)T?(12"q,(T))
—n(n+k—1T(12" g, 1(T))
= 4(T° ~ D)Qu(T) — (k +2n)T?Qu(T) — n(n + k — 1)TQ, 1(T)
likewise
Rpy1(S) = 12", 14 (S)
= 6(52 — 1)(12"75(S))
— (k +2n)S(12"r,(S))
—n(n+ k- 1)(127 1r, 4 (S))
=6(S%2 — 1)RL(T) — (k +2n)SR,(S) —n(n +k — 1)R,_1(S)

2.5 O’Sullivan-Risager’s method for developing recursions in S,

These recursions are true for all f in M}, for any k. O’Sullivan and Risager make a special note of
the case f = A in S;9 = CA with the following ideas. We have seen that 6(fg) = f6(g) for f in
Sy, and g in any M, and so A divides all 8[*/(A). Indeed, we begin with with 6[%(A) = A and

rrueger@ethz.ch — n.ethz.ch/~rrueger 25

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

811(A) = 6(A) = 0 (both are divisible by A) and inductively verify
Q

olntl(A) = 6(6M(A)) —n(n + k — l)mg[n—l](A)
— 0 (AB[’”A(A)> —n(n+k— 1)%Aw
Y (mn]A(A)) —n(n+ k- 1)%Aw
=A [9 (elnlA(A)> —n(n+k-— 1)%%

Consequently, we can define a new recursively defined operator
1
W) = Z0(4) € My,

which is convenient because ¢[%(A) = 1, ¢(A) = 0 are less complicated terms. By definition ¢
satisfies the same recursion as 6"

([1["+1](A) _ %9[n+1](A)

- %e(elnlm)) Cn(ntk— 1)%%9[”11@)
=0 <%0[”](A)> —n(n+k— 1)5—4%9@—1@)
=6 (§(2) —n(n +k — 1)< gl U(a) (2.11)

This introduces some subtlety: Since ¢["(A) lies in M,, we have on the one hand ¢[(A) =
Q™2r(S) = R™3q(T) from (2.9). In a sense, we have set k = 0 in this case. However, on the other
hand, the recursion is still valid for £ = 12 as inherited from the recursion in 6. This means we
cannot simply look at the recursions of R,,, @, and set £ = 0 just because the starting function f
has weight 0.

Now we can write

pll(4) = Q7/77,(S) = R™34,(T)
as before, and compute #,, g,, using the same methods. Firstly

~8(RM3,(T)) = RIV9P | 2nQ2,(T) + 5 (RY® - Q°T) Gu(T)
SO

1 1
PIril(a) = ROIP 2n@%G,(T) + 5 (QT — RY?) Gu(T)| — n(n + 11)%1%(”—1)/3%_1(7")

rrueger@ethz.ch — n.ethz.ch/~rrueger 26

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

and substituting ¢+ = R(*+1/3G (T we obtain

o 1(T) = B 9° |5 (QF = B¥) () — gnQ@%n(T)| —nln + 1012 R, 4()

% (QZR 4/3T) q’;l(T) - %nQ2R_4/36n(T) - n(n + 11) 1Q R~ 2/3‘171 1(T)
1 1
= LT 1) 4o (T) - InTP(T) — i+ 1) T, (T
Likewise
~0(Q"7,(5)) = QU [£nn(5) + 3@V — RS)(S)]
SO

Pl A) = Q=22 [(RS — Q%) (S) — —nan(S)] n(n + 11)&62(”“)/%71(5)
and substituting ¢p* 1 = Q(»+1)/2% . (S) we garner
Fo12(5) = @ | (RS — QY2)4(S) — gnRia(S)| — n(n+11)

= %(Q*S/:’RS —1)#(S) — an*fﬂ/?R%n(S) — n(n +11)

1
an—l(S)

1
mrnfl(s)

1 1
= 5(32 — D)7n(S) — gnSrn(S) —n(n+ 11) 'rn 1(S).
As before, we can also replace @n = 12"g,, and Rn = 12"7, to obtain the integral recursions

@nJrl(T) =4 (T3 - 1) Q’;’L(T) - 2nT2©n(T) - ’)’L(TL + 11)TQn 1(T)
Rn11(8) = 6(S% — 1)R,(S) — 2nSR(S) — n(n + 11)R, 4(S).

rrueger@ethz.ch — n.ethz.ch/~rrueger

27

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

2.6 Summary of recursions

For completeness, and ease of comparison with other literature we have included both 7, ; = ...

and 7, = ... recursions.

(i) General case

0ria(T) = 5 (T7 1) g(T) - %(k +2n)T24,(T) — n(n + & —)iTqH(T)

Tni1(S) = %(S2 1) rp(S)—— k +2n)Sr,(S)—n(n+k—1) 2 1(8)
Qn(T % (T3 1) q -1 T) - i(k +2n — 2)T An— 1(T) - (n - 1)(” +k— 2) 14an72(T)
rn(S) = % (82— 1), 1(S) ——(k+2n—2)Srn 1(8) — (n—l)(n—l—k—Z)TiArn,Q(S)

(ii) General integral case (@, = 12"q,, R, = 12"r,)
Qni1(T) =4(T? = 1) Qu(T) — (k +2n)T°Qn(T) — n(n +k — 1)TQp_1(T)

Ry1(S) = 6 (52— 1) Ry(S) — (k +2n)SRy(S) — n(n + k — 1)R,_1(S)
Qu(T) = 4(T% — 1) Q4 1(T) — (k + 2n — 2)T2Qy_4(T) — (n — 1)(n + k — 2)TQp_5(T)
R, (S) =6 (52— 1) Ry 4(S) — (k+2n — 2)SRy_1(S) — (n — 1)(n + k — 2)By_5(S)

Qni1(T) =4(T° — 1) Qu(T) — (12 + 2n)T?Qu(T) — n(n + 11)TQp 1(T)

R, 1(S) =6(5%—1) Rp,(S) — (124 2n)SR,(S) — n(n + 11)R,,_1(S)
Qn(T) =4 (T® = 1) Qp_1(T) — (20 + 10)T?Q,_1(T) — (n — 1)(n + 10)TQp_»(T)
R,(8) =6(S? —1) Ry _1(S) — (2n + 10)SR,, 1(S) — (n — 1)(n + 10)R,, 5(S)

(iv) O’Sullivan—Risager formulation when f = A

Qn—i-l(T) (T3 - 1) an(T) — gnTZQn(T) —n(n+ 11) TQn 1(T)

3
Fai1(8) = 5(57 ~ DF4(S) — ZnS7a(S) — nln + 11&%_1(5)
8(T) = 3 (T° = 1)@y 1(T) ~ £(n— T, 1(T) ~ (n — 1)(n +10) -1 TG, o(T)
Fa(8) = 5(87 ~ D7 4(8) — 3(n —)7y 1(S) — (n— 1)(n + 10) 14rn 2(8)

(v) O’Sullivan-Risager formulation when f = A integral case (Q,, = 12", R, = 12"#,)
Qn41(T) = 4 (T° = 1) Qu(T) — 2nT?Qu(T) — n(n + 11)TQpo(T)

Rn11(8) = 6(5% — 1)R,(S) — 2nSRa(S) — n(n + 11)R, 5(S)
Qn(T) =4(T* —1) @ 1(T) — 2(n — NT?Qp 1(T) — (n — 1)(n + 10)TQ, 5(T)
Rn(8) = 6(S% — 1)R;,_1(S) — 2(n — 1)SR,_1(S) — (n — 1)(n + 10)R,_5(S)

rrueger@ethz.ch — n.ethz.ch/~rrueger 28

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

2.7 A final expression

We can now piece together our results. Equations (2.7) and (2.10) together yield

n n ' k _ 1 * n—s
cs(n, zg) = (2:,) (20— 2)" "/ > e (n ") (@) QE+29)/4r (Q~3/2R)

st \s+k—1/\12
o))" ok Zanl (n+ =1\ /EXN\"° B
(n') (20— T5)" ZF(erk 1) (1§> RUk+26)/6g_ (QR-2/3)
: s=0 -

depending on whether we are evaluating at a root of R = E, or @ = Eg (or neither, and ei-
ther expression can be used). The recursively defined polynomials r,, g, are dependent on f by
definition.

These expressions become a lot more manageable when evaluated at a zero of E3.

2me)" n
ey, 20) =) (2 — Ty H QU Ay, (@32
n:

(2me)"

n!
Using the table on Page 87 of [BGHZ04], we see that {p is a root of Ej for D = —3, —4. Here
{_3 =exp(2nt/3) = p, and {_, = . These CM points are unique, since the class number is 1 in

(20 — Zg)" F/*R(k+20)/6g, (QR2/%)

both cases; a fact which be proven using the method described by Zagier in the section Finitness
of Class Numbers [BGHZ04]. In fact, we also see that in the table, that F4(p) = 0 and Eg(¢) = 0.
Hence, we obtain

co(n,p) = (QZi)n (v3) e (2v=Dep) e o) (2.12)
cp(n,1) = (22—‘|)n2n+k/z (28) %% 0. (2.13)

We note that these expressions look different to those of O’Sullivan Risager, since they used the
alternative method of developing recursions as catalogued in Subsection 2.5. The value (2p is
called the Chowla-Selberg period and defined in Proposition 26 of [BGHZ04].

Finally we remark on expansions at other CM points. Of course the same expressions are valid,
yet cumbersome, since the sum does not collapse. O’Sullivan and Risager detail how the method
may be altered for arbitrary CM points in Theorem 5.3 of [OR12].

rrueger@ethz.ch — n.ethz.ch/~rrueger 29

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

3

Algorithms to determine periodic and non-vanishing behaviour

3.1 General strategy

O’Sullivan-Risager compute the Fourier expansion of A at ¢ and remark that the polynomials p,,,
and therefore their evaluation at p,(0), are periodic modulo 5 [OR12, Prop. 5.1, pg.9]. They go
on to prove that this is behaviour is typical in Theorem 6.1: given any modular form f, a CM
point ¢ and a prime d, the values p,(0) (mod d) of the p,(t) corresponding to f expanded at {
are eventually periodic.

Using similar techniques to O’Sullivan-Risager in Subsection 3.2, we develop the necessary
theory to prove in Subsection 3.3 that for f(¢) arbitrary and Fy(t) = f(t)d, the sequence of
residues p,(t) (mod d, Fy(t)) is eventually periodic. In particular, if F'(0) = 0, then the residues
?,(0) (mod d, F4(t)) are non-zero only if the values p,(0) are non-zero, and so the values p,(0)
(mod d, Fi4(t)) are appropriate for determining non-vanishing behaviour.

Indeed, we observed in (2.12) that the Fourier coefficients are given by cf(n,{) = ab™p,(0) for
non-zero constants a, b (depending on f,{). So if we know that p,(0) (mod d, F4(t)) is periodic,
then we can verify whether p,,(0) # 0 (mod d, Fi4(t)) for all non-trivial values by simply verification
over just one period. In particular then the non-trivial p,(0) are non-zero, making the non-trivial
Fourier coefficients non-zero.

We note that the recursions of interest (Subsection 2.6) all involve the derivative of a previous
term and so we must work with the full polynomials p,(t), and cannot simply write down a
recursion for the p,(0) directly.

In practical terms, this means we must

(i) choose a prime candidate d and a polynomial f(¢) with f(0) = 0;
(ii) compute enough residues py(t), p1(¢), ..., Pr(t) modulo d, Fy(t) = f(t)d;

(iii) use these K + 1 polynomials to determine a period p and offset b of the full sequence
pO(t)rpl(t)) ,pK(t):PK+1(t)»pK+2(t)> ... modulo d>Fd(t);

(iv) and then verify whether all non-trivial values p,(0) (mod d, Fy4(t)) are non-zero over one full
period.

(v) If all non-trivial values p,,(0) (mod d, F4(t)) are non-zero, then p, (0) are non-zero in general
and we have proven that the Fourier coefficients are eventually non-vanishing. Else, we must
choose a new prime candidate d' and start again.

The question of how many polynomials p,(t) (mod d, Fi3(t)) we must compute in step (ii) before
we can detect periodicity is answered in Subsection 3.4.
3.2 Periodic behaviour of recursively defined sequences

Before developing an algorithm for computing the periodic and non-vanishing behaviour of p,(t)
(mod d, Fi4(t)) we first introduce some definitions. They are likely not standard across literature.

rrueger@ethz.ch — n.ethz.ch/~rrueger 30

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

We say a sequence a(n),n > 0 in the set X is recursive of depth r if there exists a function
R: Ny x X" — X, such that a(n) = R(n,a(n — 1),...,a(n —)) for all n > r. In this case, we
call R an r-term recursion. If R does not depend on n, then we say a(n) is recursive of effective
depth 7, and R an effective r-term recursion. Finally, if there exists an integer d so that R(n,)
depends only on n modulo d (and the previous r terms a(n —1),...,a(n —r)), then we say a(n) is
recursive of pseudo-effective depth r and hetght d. That is, a(n) is recursive of pseudo-effective
depth r and height d if

R(n,a(n —1),..,a(n—1)) = R(n +dk,a(n —1),..,a(n —1))

for all integral k£ with n + dk > 0. In this case we call R a pseudo-effective r-term recursion of
height d.

An example for a recursively defined sequence with depth 1 is the factorial sequence a(n) =
R(n,a(n — 1)) = na(n — 1),a(0) = 1. This sequence does not have effective depth 1. Given the
value of an element a,, (e.g. 720) without knowing the index, we cannot compute the next element
in the sequence. However, it is of effective depth 2. Given the last two terms a(n—1),a(n—2) (e.g.
120, 720) one can compute a(n) = S(n,a(n —1),a(n —2)) = (a(n—1)/a(n —2)+1)a(n —1). We
also note that this example illustrates that knowing that a particular recursion describing a(n) is
not effective, does not mean that every recursion describing a(n) is not effective. In the factorial
example, R was not effective, but S was. Another example for a recursively defined sequence with
effective depth 2 is the Fibonacci sequence a(n) = R(n,a(n—1),a(n—2)) = a(n—1)+a(n—2),n >
1. Given only the previous two terms (e.g. a(6) = 5,a(7) = 8), we can compute the next term
(a(8) = 5+ 8 = 13) without knowing the index (8).

The recursions in Subsection 2.6 are of depth 2, but not effective depth 2: they depend on the
last two terms and the current index n. For example, using the O’Sullivan-Risager formulation
when expanding around ¢, we have the recursion

R,(S) =6(S? — 1)R;, 1(S) —2(n — 1)SR,_1(S) — (n — 1)(n + 10)R,_,(S). (3.1)

Important for us, is that modulo d these recursions are of pseudo-effective depth 2 and height d.
To make use of this, we now develop some results on periodic behaviour

Lemma 3.1. Let a(n) be a recursively defined sequence of pseudo-effective depth r and hetght
d. If there exist indices M < N with M = N (mod d) so that

a(M)=a(N),a(M +1)=a(N+1),..,.a(M +r—1)=a(N+7r—1) (3.2)
Then a(n) s (N — M)-periodic with offset M.
Proof. The proof is very short. We simply write
alM+r)=RM+r,a(M +r—1),..,a(M))=R(N +7r,a(N +r—1),..,a(N)) =a(N +r).

where R is the pseudo-effective recursion describing a(n). The middle equality holds, because
M +r=N +r (mod d) and R is pseudo-effective of height d. Now we may inductively proceed
with M' = M +1,N' = N + 1 until we arrive at M’ = N. Then we will have shown that
a(M +k)=a(N +k)forall k =0,..,N — M. Importantly, M' = N < N' = 2N — M satisfy the
requirement of the lemma again. O

rrueger@ethz.ch — n.ethz.ch/~rrueger 31

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

We can now also prove that the recursion (3.1) is indeed not of effective depth 2 for any
recursion R describing ﬁn. We see from Equation 5.2 of [OR12] that the sequence 1,2t repeats
twice with py(t) = pg(t) = 1 (mod 5) and p5(t) = po(t) = 2t (mod 5). If p,(t) (mod 5) really
was an effective 2-term recursion, then by the lemma, p,(¢) (mod 5) would have to be 4-periodic.
This is patently not the case.

Corollary 3.2. Let a(n) be a recursively defined sequence with pseudo-effective depth r and
height d in a finite set X. Then a(n) ts eventually periodic with a period p and offset b so
thatp +b<d|X|" +1.

Proof. There are only d|X|" many tuples (n (mod d),a(n),...,a(n + r — 1)) that one can write
down. So amongst the first d|X|” + 1 there must be two which are the same, satisfying the
requirements of the lemma. We note that if m < n are two indexes for which (n (mod d), a(n), ...,
a(n+r—1)),(m (mod d),a(m), ...,a(m+r—1)) are equal, the sequence a(n) must be (p = n—m)-
periodic with offset b =m. Hencep +b=n—-m+m =n <d|X|" + 1. O

3.3 Reducing modulo d, Fy(t) for periodicity and efficiency

From the general strategy, it seems sensible to pre-compute some large number polynomials p,(t),
and then reduce them modulo d, Fyy(t) for different values of d, so that the p,(t) (mod d, F4(t))
do not need to be computed from scratch every time we choose a different candidate d. However,
there are three problems with this approach.

The first problem revolves around the choice for Fj4(t). For Lemma 3.1 to hold, we must show
that the sequence of residues p,(t) modulo d, F(t) is a recursively defined sequence. The naive
approach of taking the recursion defining p,,(t) simply reducing it modulo d, F4(t) does not always
work because, in general, the derivative does not commute with reduction modulo d, Fy(¢). (All
of recursions of Subsection 2.6 include a derivative). For example, let Fy(t) = t% d # a. Then

0,(t9) = at?1#£0 (mod 5,t%) whereas o (t_a) =0 (6) =0 (mod 5,t%).
The snippet of Appendix C shows that this is not just a problem in theory, but also in practice. If
we reduce the recursion (3.1) modulo 5, t® — ¢, then the n-th polynomial produced by the reduced
recursion is not equal to p,(t) (mod 5,t°> — t). Indeed, the snippet yields

p_{23}(t) (mod 5, t°d -t) = t74 + 3*t"2 + 2 but q_{23} = t74 + 4xt"2 + 1

The p,(t) in the snippet are the are the p,(t) computed in the usual way, and the g,(t) are those
produced by the reduced recursion.

We fix this problem, by choosing polynomials F;(t) so reduction modulo d, Fiy(t) does commute
with the derivative. The prototypical example is Fy(t) = f (t)d, where f(t) is any polynomial. We
verify this in the following, first by performing long division and writing p,(¢) = q(t)F4(t) + r(t).
Then p(t) = r(t) (mod d, Fy(t)) and

p'(t) = g'(t)F4(t) + dg(t)f (1) ()" +7(t) so p/(t)=r(t) (mod d,Fy(t)).

This shows that computing the reduction first to obtain »(¢) with deg(r) < deg(Fy4(t)) = ddeg(f(t))
and then computing the derivative /() is the same as computing the derivative p'(t) and then
reducing.

rrueger@ethz.ch — n.ethz.ch/~rrueger 32

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Moreover, as if f(0) = 0, then p,(0) # 0 (mod d, F4(t)) implies p,(0) # 0. This is readily seen
by long division.

In conclusion, we have shown that if we choose Fyy(t) = f (t)d, then p,(t) (mod d, F4(t)) satisfies
the same (integral) recursion as p, and so have the

Lemma 3.3. Let p,(t) be described by one of the integral recursions of Section 2.6, d a prime
number and f(t) a polynomral with f(0) = 0. Then the sequence p,(t) (mod d, F4(t) = f(t)d)
15 eventually periodic.

The advantage of using F(t) = % is that the reduced polynomial p(n) (mod d, F(t)) can be
represented using a polynomial of degree less than deg(t?) = d. This is comparatively cheap to
store. Conversely, the advantage of using F(t) = (t¢ — t)d, is that, as a function, the reduced
polynomial has the same values everywhere, not just at 0. Indeed, in general, if p(¢t) = q(t)
(mod F(t)), then p(a) = q(a) if F(a) = 0. Since t¢ — ¢ is zero on all of Z/{7, we see that
Pn(a) = pn(a) where P, is the residue of p, modulo t¢ — ¢ (or any power thereof).

The second problem of pre-computing many p,(¢) only to reduce them modulo d,Fy4(t) is
that we do not know how many polynomials we must pre-compute because we do not know how
the period p and offset b grow. The bound p + b < d*¥*! given in [OR12, Th. 6.1, pg. 14] is
not particularly forgiving (we obtain a similarly unforgiving bound in Corollary3.2 with |X| =

‘Z[t] / (d,td)| = d% and r = 2). This means, if we expect to find a successful candidate amongst

the first n primes, we would need to compute ~ n log(n)4n log(n)+1

polynomials. This is especially
infeasible when we consider the third problem.
Finally, the third problem is that the coefficients of the polynomials defined by a recursion of

the sort

Qu(T) = 4(T% = 1) Q4 1(T) — (k +2n — 2)T2Q, 1(T) — (n — 1)(n + k — 2)TQy_5(T)
R (S) =6 (52— 1) Rl 1(S) — (k + 2n — 2)SRp_1(S) — (n — 1)(n + k — 2)Ry_5(5)

(from “general integral case” Subsection 2.6) grow exponentially. This is in part because we multiply
by 12" to ensure that they are whole numbers. Although the coefficients grow exponentially, the
storage requirements only grow cubically with n (facts we will see shortly).

So even if we knew how many polynomials we must pre-compute, we simply would not have
enough space to store them. Of course, the computation time also grows with the size of the
polynomials.

This is illustrated by the snippet in Appendix B. First we compute the polynomials as-is,
with Recursion(Q**3, 2) (line 37) and then modulo 5,t® with Recursion(Q**3, 2, d=5) (line
64). We plot the cube root of the memory usage against the number of polynomials computed
in maroon and the logarithm of the largest coefficient of the polynomials p,(¢) in teal to obtain
Figure 3.1

That the dotted maroon line is a straight line, shows that the space required to store n (non-
reduced) polynomials does indeed grow cubically. That the teal line is straight shows that the
largest coefficient of p,(t) does indeed grow exponentially.

Moreover, we see that they require a non-trivial amount of memory: storing 8500 unreduced
polynomials needed ~ 47 GB of RAM on my machine?.

2Since I do not have 47 GB of physical RAM, I had to create large swapfiles for this to work. So I am sure this is

rrueger@ethz.ch — n.ethz.ch/~rrueger 33

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

360 ‘ ‘ 68481
324 | | =¥ No reduction 161672 =
o 288] -)):_ godredtl.lction (C;Gofk;igjfs’135162346563;\/[1]313/[]3 ‘‘‘‘ 1 54863 §
H,a 959 | eduction modulo 5, ¢> (took 1.23s, use)| | 48054 %
g6 e 141245 &
R T s 134436 &
T s {27627 8
g w8 {20818 &
= 2 e 14009 2
36 ..¥ {7200 &
0 == ¥ ¥ ¥ ¥ ¥ ¥ ¥ 391 —

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of polynomials computed

Figure 3.1: Comparison of memory usage when computing the polynomials p, (¢) without reduction
and with reduction

We conclude that computing the polynomials p,, () (mod d,t%) for each candidate d separately
is faster than pre-computing many polynomials p,(¢) and then reducing for each candidate.

3.4 Efficient period detection for the recursively defined sequences

From point (ii) of the general strategy (Subsection 3.1), we need to know how many polynomials
we need to compute to determine the period and offset of p,(t) (mod d, F4(t)) for some prime d.
We present a general algorithm here using the condition (3.2) of Lemma 3.1.

not an error of misinterpreting units e.g. kB vs MB.

rrueger@ethz.ch — n.ethz.ch/~rrueger 34

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

1

N

-

w

~

%

-

Taylor Expansions of Modular Forms at CM Points

Algorithm 1 Algorithm to compute period and offset of eventually periodic (zero-indexed) se-
quence defined by a recursion R of pseudo-effective depth r and height d. The sequence is given
as an iterator object R, with next (R) computing the next item. The minimal period P and offset
B is returned.

def period_offset(R, r, d):
Compute the first r terms
S [next (R) for _ in range(r)]
P =20
while not P:
Append the next value in the sequence
S += [next(R)]
Move a window of r elements over the sequence to verify condition (4.2)
for B in range((len(S)-r) % d, len(S)-r, d):
if S[B:B+r] == S[len(S)-r:len(S)]:
Condition (4.2) is met with M = B, N = len(S) - r
Sequence is "N - M~ periodic with offset "B~
P = len(S) - r - B
break
Compute the minimal period "p°
for p in divisors(P):
if all([S[B:B+p] == S[B+pxk:B+px(k+1)] for k in range(l, P//p)1):
break

Compute another "p~ terms to ensure S contains at least two periods
S += [next(R) for _ in range(p)]
Compute minimal offset
for b in range(B+1):
if S[b:b+p] == S[b+p:b+2x*p]:
break
return p, b

3.5 Implementing O’Sullivan-Risager’s method

Our implementation will accept functions as polynomials in @ = E4 and R = Eg. O’Sullivan-
Risager’s method, as detailed in Subsection 2.5, generally requires one to divide the function f in
S of interest by A. We know the quotient f/A is a constant, however sagemath cannot compute
this as we are treating @, R as symbolic variables. For example

import sage.all

from sage.rings.integer_ring import ZZ

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

S = PolynomialRing(ZZ, names=('Q', 'R'))
(Q, R,) = S._first_ngens(2)
print (S(Q**3/(Q**3-R**2)))

raises a TypeError: fraction must have unit denominator. Therefore, we can only allow in-

put functions explicitly as a multiple of A. For example, this works

print (S (4* (Q**3-R*x*2) /(Q**3-R*x%2)))

rrueger@ethz.ch — n.ethz.ch/~rrueger 35

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

1

1

2

3

4

5

6

~

Taylor Expansions of Modular Forms at CM Points

3.6 Installation and usage of TaylorExpansion

The source is available at github.com/rrueger/TaylorExpansion.
TaylorExpansion has been packaged as a regular Python module. It can be installed for usage
with Python with

pip install https://github.com/rrueger/TaylorExpansion/raw/main/dist/

sage_taylorexpansion-0.9.0-py3-none-any.whl

Sage uses its own package hierarchy to match the version of Python it is shipped with. To
install for usage with Sage call

sage -pip install https://github.com/rrueger/TaylorExpansion/raw/main/dist/
sage_taylorexpansion-0.9.0-py3-none-any.whl

Sage is not officially available as a python module on PyPi, therefore it is not listed as a dependency
in this module and will not be automatically installed alongside TaylorExpansion. Sage must be
installed on the system independently, before TaylorExpansion can be installed with sage -pip
as above.

The usage of the command line program taylor-product which is installed when using pip
install ... is described in the README on GitHub.

3.7 Verification of the implementation

We can verify the TaylorExpansion methods in the following

taylor-expansion --OR 'Q"3 - R72' 2

weight = 12, fn = Q73 - R72, order = 2, candidate = 5, offset = 0,
period = 20 (took 42 elements), All non-trivial Fourier coefficients are
non-zero modulo 5

Here is a repeating period of 20 polynomials

This sequence repeats forever

p_{0}(t) = 4xt"2 + 1 (mod 5)
p_{1}(t) =0 (mod 5)
p_{2}(t) = 2*%t"2 + 3 (mod 5)
p_{3}(t) = 2%t~3 + 3*t (mod 5)
p_{4Y(t) = 4*xt"2 + 1 (mod 5)
p_{5}(t) = 3*t~3 + 2%t (mod 5)
p_{63(t) = 3*%t~4 + 4%t~2 + 3 (mod 5)
p_{7}(t) = 4xt"3 + t (mod 5)
p_{8Y(t) = 4*xt"2 + 1 (mod 5)
p_{9X3(t) = 3*t~3 + 2%t (mod 5)
p_{10}(t) = 4*t~4 + 3*t"2 + 3 (mod 5)
p_{11}(t) = 4*t~3 + 3*t (mod 5)
p_{123(t) = 3*t~4 + 3*t"2 + 1 (mod 5)
p_{13}(t) = 2xt~3 (mod 5)
p_{14}(t) = 4*t~4 + 3*t"2 + 3 (mod 5)
p_{15}(t) = 4xt (mod 5)

rrueger@ethz.ch — n.ethz.ch/~rrueger 36

https://github.com/rrueger/TaylorExpansion
mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

21

22

23

24

25

26

o
27

28

29

30

31

32

Taylor Expansions of Modular Forms at CM Points

p_{16}(t) = t72 + 1 (mod 5)

p_{17}(t) = 3*t"3 + ¢ (mod 5)

p_{18}(t) = t74 + 3 (mod 5)

p_{19}(t) = 4xt (mod 5)

p_{20}(t) = 4*xt~2 + 1 (mod 5) = p_{0}(t) = 4*t72 + 1
p_{21}(t) =0 (mod 5) = p_{1}(t) =0

Now finding periodic behaviour of p_n(t=0)

The values p_{n}(0) are 4 periodic

That is, the non-trivial values p_{n}(0) are 2 periodic:
p_{4*n + 0}(0) = 1 (mod 5)
p_{4*n + 2}(0) = 3 (mod 5)

This is the same result as obtained by O’Sullivan-Risager.

3.8 Non-vanishing of the Fourier Coefficients of the j-function

Our main motivation was to compute the Fourier coefficients for the j-function, given by ;7 =
1728Q3%/A. Since A lies in Sy, we know that 6(5) = 17286(Q3)/A. We perform a computation
very similar to (2.11). We know that 81%(5) = j = 1728Q%/ A and 6!!(5) = 12780(Q3)/A. Now we
inductively verify

Q

o) = 661" (5)) — n(+ — 1)1 601()
=6 <l7jgelﬂ 1](Q3)> —n(n+k—1) 1224 deln 1(Q%)
= 2266l 1(Q%) — nln + k- 1)1 e (@?)
- ”jg (66 1@%) ~ n(n 1~)0 @)
= T Rgirg2)

As such, we are really only interested in computing gln] (Q%). Although Q3 is in M, it is not a
cusp form, so we cannot use the O’Sullivan-Risager method. We prepare use of the module with
the imports

from TaylorExpansion import compute

import sage.all

from sage.sets.primes import Primes

5 from sage.rings.integer_ring import ZZ

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

S = PolynomialRing(ZZ, names=('Q', 'R'))
(Q, R,) = S._first_ngens(2)
P = Primes () .unrank_range (2, 1000)

We begin with the expansion around p, a point of order 3.

TaylorExpansion.compute(S('Q~3'), 3, candidates=P, verbose=True, 0S=False)

rrueger@ethz.ch — n.ethz.ch/~rrueger 37

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Our first prime candidate is 5. Our program tells us that the polynomials p,,(¢) are periodic with
period 1 and offset 4, they are p5(t) = p{n=51(t) = 0 (mod 5). Therefore, by the general strategy
(Subsection 3.1), we cannot use this information to conclude any non-vanishing properties of the

non-trivial Fourier coefficients.

We continue with the next (prime) candidate 7. The polynomials are again periodic with
offset 3 and period 42. Importantly, all non-trivial Fourier coefficients are non-zero! The first 3
polynomials are p, = t3, p; = 2t?, p, = 4t* + 5t. Then the following 42 are

ps =6t3+1 Py =6t2 +12 | ps =5t +2t | ps=t0+6 | p; =5t° + 2t% | pg = 4t* + 5t
pg = 4t8 +2t3 +1 | 25 + 5¢2 t* + 2t 2t8 +2t3 + 6 | 6t° + 6t2 5t
pis=2t34+1 3t5 2t 6 5¢2 5t

Py =683 +1 0 5t4 4 2t t3 46 t5 + 6t2 2% + 5t

poy = 6t6 + 1 2t5 + 5¢2 3t + 2t 3t0 +5t3 4+ 6 | 5t°+ 2t2 6t* + 5t

p3g = 5t8 + 5t + 1 | ¢° +¢2 2t 5t3+ 6 45 5t

Py =1 2t? 2t t3+6 0 2t* + 5t

Computing the next 2 polynomials pss = 6t3 + 1, psg = 6t* + t2 verifies that the sequence

indeed repeats (since the indices of comparison 45, 3 are the same modulo 7, as in Lemma 3.1). A

visual inspection immediately shows us that
Pen(0) =6 (mod 7) and pg,3(0) =1

We also see that ps,,1(0) = p3,2(0) = 0 (mod 7). This is consistent with Lemma 2.1. Indeed,
k/2 = 6 and so when n # k/2 = 0 (mod 3) we expect that p,(t) = 0 (this is true without reduction

(mod 7).

modulo 7).

We can also plot the coefficients of each monomial t* in g,(t) (mod 7) to see the periodic

and non-vanishing behaviour of p,(¢) and in particular p,(0).

The marked points on the black

line indicate the values of p,(0) (mod 7) at non-trivial Fourier coefficients. We see they alternate

between 0 and 6 modulo 7.

10 I I I I I I I I I I I I

; g || — Coefficient of ¢ in g,(¢t) —— Coefficient of ¢ in g, (t) —— Coefficient of ¢* in g,(¢) | |
E gl Coefficient of t* in g,(t) - - - Coefficient of ¢° in g,(t) - - - Coefficient of ¢° in g,(t) | |
= —e— Coefficient of t° in g,(t)

s 7| *
$ 60] ; 1
B Y ! § st

ey v h " ,1‘ 'y n : W

Gt 4 h '“" AW [P nh |

NN L EARAANAS g

g o] AT § f
HLE.’ 2 7 ! ' ',' ' i ‘(,\‘ ! ! 'l‘ '\i ‘lll\" 1 :ﬂ ' 10 :"

8 1s 'I l‘" ll,' “ ' : "" “1 \ “:‘ I| : ‘| ,' ‘\'
O AT 1 /) h 1 i VAN ' 1 \

0
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
n
Figure 3.2: Graphing the coefficients of each monomial t* in qn(t).
rrueger@ethz.ch — n.ethz.ch/~rrueger 38

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

TaylorExpansion automates the majority of this work. When called with

1 taylor-expansion --latex 'Q"3' 3

our program produces the following (IATEX source code to produce the) output

The first 3 polynomials

pozt?’

p3 =63 + 1
py = 6t° +t2
ps = 5t4 + 2t
ps=1% 46
p; = 5t° + 2t2
pg = 4t* + 5t

pg = 4t8 +2t3 +1
pyo = 2t° + 5t2

P =t 42t

po =2t 4+2t3+6
P13 = 6t° 4 6t2

are

The 42 repeating polynomials are

P14 = 5t

Pis = 2t3 +1
p1p = 3t°

pP1g =6

P20 = 5t

Po1 = 6t3 +1
P2 =0

P23 = 5t4 + 2t

Modulo 7, the polynomials have period 42 and offset 3

py = 4t* + 5t
Pos = t° + 6t2
pog = 2t* + 5t
pyr = 6t8 + 1
Pog = 25 4 5t2
Pog = 3t* + 2t

p3o =3t0 + 5t +6
P31 = 5t5 + 2t2

p3y = 6t* + 5t

P33 = 5t0 +5¢3 + 1
D3y = 5 4 ¢2

P35 = 2t

D3g = 5t + 6
p3y = 4t°

P3g = 5t

P3g =1

Pag = 2t

Py =2t

Py =t +6
P43 =0

Dag = 2t* + 5t

Values of p,(0) (mod 7)

Pon3(0) = 1 (mod 7) Pon10(0) = 6 (mod 7)

We can do the same for expanding around :. Here, the polynomials repeat with a period of
936 and offset 143 for the candidate d = 13. The full list is given in Appendix D. Here we show
the periodic, and in particular non-zero, behaviour of the p,(0).

Values of p,(0) (mod 13)

Pran+2(0) = 8 (mod 13) Pran+22(0) = 12 (mod 13) Pran+42(0) =9 (mod 13)
Pran+4(0) = 12 (mod 13) Pran+24(0) = 3 (mod 13) Pr2n+44(0) = 12 (mod 13)
Pran+6(0) = 4 (mod 13) Pran+26(0) = 7 (mod 13) Pr2n+46(0) = 4 (mod 13)
Prant8(0) =1 (mod 13) Pr2n128(0) = 4 (mod 13) Pront48(0) =1 (mod 13)
P72n+10(0) = 9 (mod 13) P72n+30(0) = 10 (mod 13) Pr2nt50(0) = 11 (mod 13)
Pran+12(0) = 12 (mod 13) Pran+32(0) = 9 (mod 13) Pran+52(0) = 10 (mod 13)
Pran+14(0) = 2 (mod 13) Pr2n+34(0) =3 (mod 13) Pran+54(0) = 12 (mod 13)
Prant16(0) = 3 (mod 13) Pran136(0) =4 (mod 13) Pront56(0) = 3 (mod 13)
Prant18(0) = (mOd 13) Pran+38(0) =5 (mod 13) Pront58(0) =1 (mod 13)
Pran+20(0) = 10 (mod 13) P7an+40(0) =1 (mod 13) Pr2n+60(0) = 10 (mod 13)

rrueger@ethz.ch — n.ethz.ch/~rrueger

39

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

-

Taylor Expansions of Modular Forms at CM Points

Pran+62(0) = 6 (mod 13) Pr2n+66(0) =3 (mod 13) Pran+70(0) = 10 (mod 13)
Pr2nt64(0) =9 (mod 13) Prant68(0) =4 (mod 13) Pr2n+0(0) =9 (mod 13)

We conclude with the result

Lemma 3.4. The non-trivial Fourier coefficients of the j-function when expanded at ¢ are

non-vanishing.

3.9 Further results and growth of the period

We can also use TaylorExpansion to investigate the growth of the period and offset.

from TaylorExpansion import compute

3 import sage.all

11

12

14

from sage.sets.primes import Primes

from sage.rings.integer_ring import ZZ

s from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

S = PolynomialRing(ZZ, names=('Q', 'R'))
(Q, R,) = S._first_ngens(2)

P = Primes () .unrank_range (2, 24)

for p in P:

for line in compute(Q**3, 2, candidates=[p], verbose=False):
print(line)

Produces the output (post-formatted).

rrueger@ethz.ch — n.ethz.ch/~rrueger

40

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

Taylor Expansions of Modular Forms at CM Points

Offset | Period | Elts. required | All non-trivial non-zero?

5 4 1 16 | No

7 21 1 37 | No
11 121 1 145 | No
13 2 936 1876 | Yes
17 0 1088 2178 | No
19 209 1 249 | No
23 265 1 313 | No
29 18 5684 11388 | Yes
31 609 1 673 | No
37 26 | 23976 47980 | Yes
41 30 | 16400 32832 | No
43 | 1365 1 1453 | No
47 | 1681 1 1777 | No
53 42 | 35828 71700 | Yes
59 2821 1 2941 | No
61 50 | 109800 219652 | No
67 | 3741 1 3877 | No
71| 4249 1 4393 | No
73 62 | 94608 189280 | Yes
79 | 5361 1 5521 | No
83 | 5965 1 6133 | No
89 78 | 86152 172384 | No

Here, the “Elts. required” column denotes how many elements needed to be computed before

the period could be successfully detected with property (3.2). We see two interesting things.

Firstly, in cases where all non-trivial Fourier coefficients are non-zero the period grows very

quickly. The log-plot (Figure 3.3) of both the period (in cases where all non-trivial Fourier coef-

ficients are non-zero) appears somewhat straight. It also indicates that the number of elements

required to detect periodicity is a constant multiple of the period, showing that the algorithm

scales sensibly.

The second interesting point is that often, when there non-trivial Fourier coefficients which

are 0 (mod d), it is because the polynomials eventually become 0 (period 1). However, it is not

always the case.

rrueger@ethz.ch — n.ethz.ch/~rrueger

41

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/

—_
w

T T T T T T T T T T T
12l == Period of p,(0) (mod d) h
=3¢ Elts. required to detect periodicity /
11} / i
2 10f h |
=]
5o |
a
% 8| .
S
7 [-
6 [|
5 | | | | | | | | | | | | |
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Prime d

Figure 3.3: A log-plot (in maroon) of the size of the period of p,(0) (mod d) where d is a prime
where all non-trivial Fourier coefficients are non-zero modulo d. Also plotted (in teal) is the number
of element p,(t) that were required to detect the periodicity.

-

N}

10

11

12

13

14

40

41

42

43

44

46

47

For completeness the source of the implementation is listed below. It implements a Python module which

A

A Sage implementation MFTaylorExpansion

can be natively imported in both Python and Sage.

#!/use/bin/env python3

from argparse import ArgumentParser, ArgumentTypeError

Sage modules

import sage.all

from
from
from
from
from
from
from
from

from

sage
sage
sage
sage

sage

sage.

sage

sage.

sage

.rings.integer_ring import ZZ

.rings.rational_field import QQ
.rings.finite_rings.integer_mod_ring import Zmod
.rings.polynomial.polynomial_ring_constructor import PolynomialRing

.rings.laurent_series_ring import LaurentSeriesRing

calculus.functional import derivative

.sets.primes import Primes

arith.misc import divisors

.misc.latex import latex

Silence warnings about slow implementations in the pre-processing step e.g.

#
#
try:

verbose 0 (4176: multi_polynomial_ideal.py, groebner_basis)

Warning: falling back to very slow toy implementation.

from sage.misc.verbose import set_verbose

set_verbose (-1)

except ImportError:

tr

y:

from sage.misc.misc import set_verbose

set_verbose (-1)

except ImportError:

(t,
g =
,

pass

) = PolynomialRing(ZZ, names=('t',))._first_ngens (1)

PolynomialRing (ZZ, names=('Q', 'R'))
R,) = S._first_ngens(2)

def reduce(poly, n, lift=True):

Assumes poly is an element of PolynomialRing(ZZ, names=('t'))

R
T
(t
S

if lift:

el

= PolynomialRing(ZZ, names=('t'))

= R.change_ring(Zmod(n))

5) E

T._ first_ngens (1)

= T.quotient (t**n)

return S(poly).lift ()

se:

return S(poly)

return poly % n

55

56

57

58

62

63

64

65

66

67

68

69

71

72

73

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

def
if

if

compute_weight (p, check=True):

p==
return O

check:
weights = [4*Q_power + 6*R_power for (Q_power, R_power) in p.exponents ()]
if all([weight == weights[0] for weight in weights]):

return weights [0]
print (f'{p} is not homogeneous!')
exit (1)

else:

def
(t

k

if

if

#
#

H OH OH OH OH OH OH OH OH K OH OH OH K HEHE H K H H

Q_power, R_power = p.exponents () [0]
return 4*Q_power + 6*R_power

init_poly(p, order, OR=False):

,) = PolynomialRing(ZZ, names=('t'))._first_ngens (1)
= compute_weight (p)

OR:

if k !'= 12:

print ("Error. 0'Sullivan-Risager variant only for forms of weight 12")
print (£"{f} is of weight {k}")
exit (1)

return 1

p == 0:
return O*t

Sage implementation detail

In theory, an approach like this would be ideal

R1
R2 = LaurentSeriesRing(R1, names=('r')); (r,) = R2._first_ngens (1)

LaurentSeriesRing (QQ, names=('q')); (q,) R1._first_ngens (1)

R3 = PolynomialRing(R3, names=('w')); (w,) = R3._first_ngens (1)

if order == 3
S = R3.quotient (g*x*12 * r**x(-8) - w)
#

elif order == 2:
S = R3.quotient (r*x*12 * qx*x*(-18) - w)
#

However, we have the following issue
print (S(g*r).1lift ())

q*r # Here we want w!

So we are forced to use an approach like this (e.g. for order = 2)

R = LaurentSeriesRing (QQ, names=('q')); (q,) = R._first_ngens (1)

RR = PolynomialRing(R, names=('r', 'w')); (r, w,) = RR._first_ngens(2)
S = RR.quotient (g*r-w)

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

print (S(g*r).1lift())

w
if order == 3:
Point = \rho
R(\rho) !'= 0, so we can invert R:
Q"a R"b = R"{k/6} (Q R"{-2/3})"a
Sage does not support fractional powers for LaurentSeriesRing
Think: r = R™{1/12}
R = LaurentSeriesRing(QQ, names=('r'))

(r,) = R._first_ngens (1)

Think: q = Q~{1/12%}

w is a helper ariable used for the quotient
RR = PolynomialRing(R, names=('q', 'w'))

(g, w,) = RR._first_ngens(2)

We want w = QR"{-2/3} = q~{12}r~{-8}

S = RR.quotient (g**12 * r**(-8) - w)

s = 0xq + Ox*r

for coef, (Q_power, R_power) in zip(p.coefficients(), p.exponents()):

s += coef * qx*x(12xQ_power) * r**(12*R_power)
s *= r**x(-2xk)
s = S(s).1lift ()

elif order == 2:
Point = 1
Q(i) !'= 0, so we can invert Q:
Q"a R"b = Q°{k/4} (Q~{-3/2} R)"D
Sage does not support fractional powers for LaurentSeriesRing
Think: q = Q~{1/12}
R = LaurentSeriesRing(QQ, names=('q'))
(9,) = R._first_ngens (1)
Think: r = R~{1/12}
w is a helper variable used for the quotient
RR = PolynomialRing(R, names=('r', 'w'))
(r, w,) = RR._first_ngens(2)
S = RR.quotient (r**12*xqg**(-18) - w)

s = 0Oxq + Ox*r

for coef, (Q_power, R_power) in zip(p.coefficients(), p.exponents()):

s += coef * q**(12*xQ_power) * r*x(12*R_power)
s *= q**(-3%k)
s = S(s).1ift ()

p_init = 0%t

s is a polynomial in RR (it was sent to S and the lifted back to RR)

Therefore, although it is expressed only in the variable w, it is
formally in r and w (See the definition of RR)
So we throw away the first in every pair using (_, exp)
for coef, (_, exp) in zip(s.coefficients(), s.exponents()):
p_init += int(coef.subs(r=0, w=0, g=0))*t**xexp

return p_init

156 class Recursion:

157 def vprint(self, *args, **xkwargs):
158 if self.verbose:

159 print (xargs, **kwargs)

160

161 def _reduce(self, poly): return reduce(poly, self.d) if self.d else poly

163 def __init__(self, f, order, d=None, verbose=True, OR=False):

164 self.n = 0

165 self.order = order

166 self.d = d

167 self .verbose = verbose

168 self .0R = OR

169 self .k = compute_weight (f)

170

171 if OR and self.k != 12:

172 print ("Error. 0'Sullivan-Risager variant only for forms of weight 12")
173 print (£"{f} is of weight {self.k}")

174 exit (1)

175

176 if self.OR:

177 try:

178 self.f = S(f/(Q**3 - R**2))

179 except TypeError:

180 print (f"Error. When using the OR-method, {f} must be given"
181 f"as explicit multiple of the discriminant Q~3-R72")

182 exit (1)

183 else:

184 self .f = £

185

186 self .p0 = self._reduce(init_poly(self.f, order))

187 theta_p0 = -(4*Rxderivative(self.f, Q) + 6xQ**2*derivative(self.f, R))
188 self .pl = self._reduce(init_poly(theta_pO, order))

189

190 def __iter__(self): return self

191

192 def __next__(self):

193 if self.n ==

194 self.n += 1

195 return self._reduce(self.p0)

196 elif self.n == 1:

197 self.n += 1

108 return self._reduce(self.pl)

199

200 if self.order == 2 and self.OR:

201 p2 = self._reduce (6x(t**x2-1)*derivative (self.pl)
202 - 2*(self.n-1)*t*xself.pl

203 - (self.n-1)*(self.n+10)*self.p0)

204 elif self.order == 2 and not self.OR:

208 p2 = self._reduce(6*(t**2-1)*derivative(self.pl)

206 - (self.k+2*self.n-2)*t*self.pl

207 - (self.n-1)*(self.n+10)*self.p0)

208 elif self.order == 3 and self.OR:

200 p2 = self._reduce (4*(t**3-1)*derivative(self.pl)
210 - 2x(self .n-1)*xt**x2*self.pl

211 - (self.n-1)*(self.n+10)*t*self.p0)

212 elif self.order == 3 and not self.OR:

213 p2 = self._reduce (4*(t**3-1)*derivative(self.pl)
214 - (self.k+2*self .n-2)*t**x2*xself.pl

215 - (self.n-1)*(self.n+self.k-2)*t*xself.p0)
216

217 self.n += 1

218 self .p0, self.pl = self.pl, p2

219 return self._reduce(self.pl)

220

221

222 def minimal_period(seq, period):

223 # Given a periodic (from the start) sequence and a period, find the
224 # minimal period

25 for min_period in divisors(period):

226 # Use a generator expression for lazy eval

227 if all((seql:min_period] == seq[min_period*k:min_period#*(k+1)]
228 for k in range(l, period//min_period)

229)):

230 break

231 return min_period

232

233

234 def period_offset(R, r, d):

235 # Compute the first r terms

238 S = [next(R) for _ in range(r)]
237 P =20

238 while not P:

239 # Append the next value in the sequence

240 S += [next(R)]

241 # Move a window of r elements over the sequence to verify condition (4.2)
242 for B in range((len(S)-r) % d, len(S)-r, d):

243 if S[B:B+r] == S[len(S)-r:len(S)]:

244 # Condition (4.2) is met with M = B, N = len(S) - r

245 # Sequence is "N - M™ periodic with offset "B~

246 P = len(S) - r - B

247 break

248 # Compute the minimal period “p°

220 for p in divisors(P):

250 if all([S[B:B+p] == S[B+p*k:B+p*(k+1)] for k in range(l, P//p)]1):
251 break

252 # Compute another "p~ terms to ensure S contains at least two periods
53 S += [next(R) for _ in range(p)]

254 # Compute minimal offset

255 for b in range(B+1):

256 if S[b:b+p] == S[b+p:b+2x*p]:

257 break

258 return p, b, S

259

260

2

)
=

262

263

2%

>
=~

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

def pprint(polys, d, period, offset, rd, LaTeX=False):
Pretty print the polynomials

poly_strs = [f"p_{{{n}}}(t) = {reduce(poly, d)1}"
for n, poly in enumerate (polys[:offset+period+rd])]
max_len = max([len(poly_str) for poly_str in poly_strs])

if LaTeX:
print ("\\noindent")
print (f"Modulo {d}, the polynomials have period {period} and offset {offset}")
print ()

if offset:
print ("\\noindent")
print (£"The first {offset} polynomials are")
print (£"% The first {offset} polynomials are " + "{{{{{")
print ()
print ('\\begin{multicols}{2}"')
for n, poly in enumerate(polys[:offset]):
print (£" \\noindent $p_{{{n}}} \\equiv {latex(poly)}$\n")
print ('\\end{multicols}')
print ("% }}}}}™)

print O)

print ("\\noindent")

print (£"The {period} repeating polynomials are")

print (£"% The {period} repeating polynomials are " + "{{{{{")

print ('\\begin{multicols}{2}"')
for n, poly in enumerate(polys[offset:offset+period]):
print (f" \\noindent $p_{{{n+offset}}} \\equiv {latex(poly)l}$\n")
print ('\\end{multicols}')
print ("% }}}}F")
print O)

else:

if offset:
print O)
print (£"The first {offset} non-periodic polynomials")
print ()
for poly in poly_strs[:offset]:

print(£" {poly.ljust(max_len)} (mod {d})")

print ()

print (f"Here is a repeating period of {period} polynomials")
print ("This sequence repeats forever")

print ()

for poly in poly_strs[offset:offset+period]:
print (£" {poly.ljust(max_len)} (mod {d})")

for n, poly in enumerate(poly_strs[offset+period:offset+period+rd]):

313

314

315

316

3

=
3

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

print (f" {poly.ljust(max_len)} (mod {d}) = {poly_strs[n+offset]}")
print (" ...")

def pprint_pO(polys, d, order, period, offset, LaTeX=False):
Pretty print the polynomials evaluated at O

if not LaTeX:
print ("Now finding periodic behaviour of p_n(t=0)")

Since the polys are “period” periodic (after offset “offset”), the same
must be true for evaluating at O, however p(0) may have a shorter period
values = [int(poly.subs(t=0)) for poly in polys[offset:offset+period]]
s_period = minimal_period(values, period)

if LaTeX:
print ("\\noindent")
print (f"Values of $p_{{n}}(0) \\pmod{{{d}}}$")
print (£"% Values of $p_{{n}}(0) \\pmod{{{d}}}$" + "{{{{{")
print ('\\begin{multicols}{3}"')
for n, poly in enumerate(polys[offset:offset+s_period]):
if poly.subs(t=0) != 0:
print (£" \\noindent $p_{{{s_period}n + {(n+offset)’s_period}}}(0)"
£f" \\equiv {poly.subs(t=0)} \\pmod{{{d}}}$")
print ()
print ('\\end{multicols}')
print ("% }}}}F")
print O)

else:
print (£"The values p_{{n}}(0) are {s_period} periodic")
print (f"That is, the non-trivial values p_{{n}}(0) are {s_period//order}
periodic:")

for n, poly in enumerate(polys[offset:offset+s_period]):
if poly.subs(t=0) != 0:
print (£" p_{{{s_period}*n + {(n+toffset)%s_period}}}(0)"
f" = {poly.subs(t=0)} (mod {d})")

def compute(f, order, candidates=[5], max_candidates=1, verbose=True, OR=False,
LaTeX=False):
def vprint (*args, **kwargs):
if verbose and not LaTeX:

print (xargs, **xkwargs)
k = compute_weight (f)

return_str = []

successful_candidates = 0

for d in candidates:

Initialise recursion

364

365

366

367

368

369

370

371

374

375

376

377

378

380

381

382

383

388

389

390

391

392

394

395

396

397

398

399

400

401

402

404

405

406

4

S

7

408

409

410

411

412

413

414

415

416

R = Recursion(f, order, d=d, verbose=verbose, O0R=0R)

Get periodicity, offset, and the computed polynomials

“comp” includes (at least) two full periods

period, offset, comp = period_offset(R, 2, d)

if compl[offset:offset+period] != comploffset+period:offset+2*period]:
print("Failed period computation")

msg = ""

msg += f'"weight = {k}"

msg += f", fn = {f}"

msg += f", order = {order}"

msg += f", candidate = {d:>4}"

msg += f", offset = {offset:>4}"

msg += f", period = {period:>4}"

msg += f" (took {len(comp)} elements)"

zero = False

for n, poly in enumerate(comp[offset + abs(k//2 - offset) % order::order]):

if poly.subs(t=0) == 0:
nth = nxorder + offset + abs(k//2 - offset) % order
msg += ", Not all non-trivial Fourier coefficients are nonzero"

msg += f", e.g. the {nth}th poly p_{{{nth}}}(t) = {poly} (mod {d})"

zero = True
break

if not zero:

vprint (£"All non-trivial Fourier coefficients are non-zero modulo {d}")

successful_candidates += 1

msg += f", All non-trivial Fourier coefficients are non-zero modulo {d}"

vprint (msg)
return_str += [msg]

if verbose and not zero:
pprint (comp, d, period, offset, 2, LaTeX=LaTeX)
pprint_pO(comp, d, order, period, offset, LaTeX=LaTeX)

if successful_candidates == max_candidates:

break

return return_str

def qr(polynomial):
"""Verifies that the polynomial given is one of Q, R"""
S = PolynomialRing(ZZ, names=('Q', 'R'))
(Q, R,) = S._first_ngens(2)
try:
S(polynomial)
except TypeError:

raise ArgumentTypeError(f"'{polynomiall}' is not a polynomial in Q, R")

return S(polynomial)

417

4

8

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

456

def main():

parser = ArgumentParser(description='Prints polynomials for computing the
Expansion'

of a modular form at a given point.'

)

parser.add_argument ('--OR', action='store_true',

The periodicity of the polynomials is computed'

help="Use 0'Sullivan-Risager's method."
" Only works when function is given as explicit"
" multiple of Q73 - R72."
)
parser.add_argument ('--latex', action='store_true',
help="Pretty print output in LaTeX compatible format"
)
parser.add_argument ('f', type=qr,
help="Function to expand."
" Expressed as a polynomial in R, Q"
)
parser.add_argument ('order', type=int, choices=[2, 3],
help="0Order of the point to expand at."
" 2: Expands at i. 3: Expands at \\rho"
)

args = parser.parse_args ()

Exclude 2 and 3 for now (2, 3 are the only factors of 12)
P = Primes () .unrank_range(2, 1000)

(t,) = PolynomialRing(ZZ, names=('t',))._first_ngens (1)

S PolynomialRing(ZZ, names=('Q', 'R'))

(Q, R,) = S._first_ngens(2)

compute (args.f,
args.order,
candidates=P,
OR=args.OR,
verbose=True,
LaTeX=args.latex)

__name__ __main__

main ()

Taylor

10

11

13

14

15

16

B

Memory usage comparison

This snippet produces Figure 3.1.

#!/usr/bin/env python3

from TaylorExpansion import Recursion
from os import getpid

from subprocess import run

from math import floor, ceil, sqrt, log

from datetime import datetime

Sage modules
import sage.all
from sage.rings.integer_ring import ZZ

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

def _run(command, capture_output=True):
result = run(command, capture_output=capture_output, text=True)

try:
result.check_returncode ()
except Exception as exception:
if result.stderr:
print (result.stderr)
else:
print (exception)
exit (1)

if result.stdout:
return result.stdout.strip('\n').split('\n')

return []

def memuse(pid):
return int(_run(["ps", "-p", £"{pid}", "-o", "vsz="]1)[0])

8500
100

upto

step

pid = getpid ()
(Q, R,) = PolynomialRing(ZZ, names=('Q', 'R'))._first_ngens(2)

start = datetime.now()
memstart = memuse (pid)
R1 = Recursion(Qx**3, 2)
S1 =[]
M1 = []
c1 = []

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

for _ in range(upto//step):
S1 += [next(R1) for __ in range(step)]
biggest_coef = max([max([abs(c) for ¢ in poly.coefficients()])
for poly in Si[-step:]])
Need to cast int, since sage treats this like a special type
C1 += [(len(S1), log(int(biggest_coef)))]
Current memory usage of python process in kB
M1 += [(len(S1), round((memuse (pid)-memstart)**(1/3), 2))]

memfinall = (memuse(pid)-memstart)//1000

Mi_str = " ".join([f" ({n}, {mem})" for n, mem in M1])

Cli_str = " ".join([f" ({n}, {biggest_coef})" for n, biggest_coef in C1])
diff = (datetime.now() - start)

T1 = round(diff.seconds + diff.microseconds/10*x*6, 2)

start = datetime.now()

memstart = memuse (pid)

R2 = Recursion(Q**3, 2, d=5)
s2 = [1
M2 = []
for _ in range(upto//step):
S2 += [next(R2) for __ in range(step)]

Current memory usage of python process in kB
M2 += [(len(S2), round((memuse (pid)-memstart)**(1/3), 2))]

memfinal?2 = (memuse(pid)-memstart)//1000

M2_str = " ".join([f" ({n}, {mem})" for n, mem in M2])
diff = (datetime.now() - start)
T2 = round(diff.seconds + diff.microseconds/10**x6, 2)

ymin = min(min([floor (mem) for _, mem in M1]), min([floor(mem) for _, mem in M2]))

ymin = 0 if ymin < 10 else ymin

ymax = max (max([ceil (mem) for _, mem in M1]), max([ceil(mem) for _, mem in M2]))
r_ymin = min([floor (mem) for _, mem in C1])

r_ymax = max([ceil(mem) for _, mem in C1])

print(£''"'

\\begin{{figurel}}[h]

\\centering
\\pgfkeys{{/pgf/number format/.cd,1000 sep={{}}}}
\\pgfplotsset{{scaled y ticks=falsel}}
\\begin{{tikzpicturel}}
\\begin{{axis}}[
ylabel={{\\teal{{log(Biggest coefficient of $p_n(t)$)}}}},
width={{0.9\\textwidth}},
height={{0.3\\textheightl}},
xmin={{03}},
xmax={{{upto}}},
xtick={{0,1000,...,{upto}}},
hide x axis,

ymin={{{r_ymin}}},

102 ymax={{{r_ymax}}},

103 ytick={{{r_ymin},{r_ymin + (r_ymax-r_ymin)//10},...,{r_ymaxl}}},
104 axis y linex={{right}},
105 1,

106 \\addplot [

107 color=teal,

108 smooth,

109 mark=x,

110 mark repeat=10,

111 mark phase=10,

112 mark options={{solid}},
113 mark size=4pt,

114 ultra thick,

115] plot coordinates {{
116 {C1_str}

17 }}; \\label{{plti}}
8 \\end{{axis}}

1

=

19 \\begin{{axis}}[

120 legend pos={{north westl}},

121 legend cell align={{leftl}},

122 legend style={{font=\\smalll}},

123 xlabel={{Number of polynomials computedl}},

124 ylabel={{\\maroon{{${{\\left (\\textup{{Memory Usage}}\\right)}}"{{\\frac
{{133{{33}}33$3}3},

125 width={{0.9\\textwidth}},

126 height={{0.3\\textheight}},

127 xmin={{03}},

128 xmax={{{upto}}},

129 xtick={{0,1000,...,{upto}}},

130 ymin={{{ymin}}},

131 ymax={{{ymax}}},

132 ytick={{{ymin},{ymin + (ymax-ymin)//10},...,{ymax}}},

133 axis y linex={{left}},

134 1,

135 \\addlegendimage{{/pgfplots/refstyle=plti}}\\addlegendentry{{No reduction}}

136 \\addplot [

137 color=maroon,

138 dotted,

139 smooth,

140 mark=x,

141 mark repeat=10,

142 mark phase=10,

143 mark options={{solidl}},

144 mark size=4pt,

145 ultra thick,

146] plot coordinates {{

147 {M1_str}

148 3}

149 \\addlegendentry{{No reduction (took {T1}s, used {memfinall} MB)}}

150

151 \\addplot [

152 color=maroon,

153 smooth,

154

155

156

157

158

159

160

161

162

163

164

165

166

167

1

o

8

169

mark=x,

mark repeat=10,

mark phase=10,

mark options={{solid}},

mark size=4pt,

ultra thick,

] plot coordinates {{

{M2_str}

335

\\addlegendentry{{Reduction modulo $5, t~5% (took {T2}s, used {memfinal2} MB)}}

\\end{{axis}}
\\end{{tikzpicturel}}

\\caption{{Comparison of memory usage when computing the polynomials $p_n(t)$

without reduction and with reductionl}}\\label{{fig:memoryl}}
\\end{{figurel}}

III)

1

10

11

12

13

18

19

20

21

#1/u

Sa
impo
from
from
from

from

def
#
R
T
(t
S

re

R =
(t,

3 # Ca

po,
q0,

whil
pn
pO

qn
q0

if

n

C

Reduction during computation example

sr/bin/env python3

ge modules

rt sage.all
sage.rings.integer_ring import ZZ
sage.rings.finite_rings.integer_mod_ring import Zmod
sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing

sage.calculus.functional import derivative

reduce (poly, n):
Assumes poly is an element of PolynomialRing(ZZ, names=('t'))

PolynomialRing (ZZ, names=('t'))

R.change_ring(Zmod(n))
,) = T._first_ngens (1)
T.quotient (t**n - t)
turn S(poly).lift ()

PolynomialRing (ZZ, names=('t'))
) = R._first_ngens (1)

st 0 and 1 as elements of R
pl R(0), R(1)
ql R(0), R(1)

= False

e not diff:
= 6% (t**2-1)*derivative(pl) - 2*(n-1)*t*pl - (n-1)*(n+10)*p0
, pl = pl, pn

= reduce (6x(t**2-1)*xderivative(ql) - 2*x(n-1)*t*ql - (n-1)*(n+10)*q0, 5)
, ql = q1, gn

reduce (pn, 5) != qgn:
print (f"p_{{{n}}}(t) (mod 5, t~d -t) = {reduce(pn, 5)} but q_{{{n}}} = {qn}")
diff = True
+= 1

D

Polynomials of the Fourier coefficients of the j-function at ¢

The following output is produced using

taylor-expansion --latex 'Q73' 2

Modulo 13, the polynomials have period 936 and offset 2

The first 2 polynomials are

=1

The 936 repeating polynomials are

py =5t2 +8
p3 = 6t3 + 7t
py =t + 12
ps = 9t3 + 4t
pg = 3t* +6t2 +4
pr = 4t3 + ot

pg =6t* +6t2+1

Py = 2t5 + 103 + ¢

pro=t*+3t2+9

Py = t° + 12t

prp = 90+t +4t? 412

P13 = 125 + 10t3 + 4t

pig = 80 + 12t% + 4¢2 4+ 2

ps = Tt7 + 6t

p1g = 5t + 5t2 + 3

Py = 4t7 +2t5 493 + 11t

p1g =108 + 70 + 82 +1

prg = 4t° + 6t3 4+ 3t

poo = Tt8 + 125 4 10¢2 + 10

Dy = 11¢% + 5¢7 + ¢34 ot

Dy = 11#8 + 75 + 3t + 62 + 12

pog = 12t + 5¢7 + 3¢5 + 4¢3 + 2t

Dog = 4410 4 448 + 4t 4 4t% + Tt2 4+ 3
pos = 6t° + 10t7 + 43 + 6t

po = 5¢10 + 1068 +10t8 + 7t + 7

Doy = 6t + 89 4 77 4 10¢° 43 + 7t
Do = Tt10 + 88 1+ 6t6 + 10t* 4 4t% + 4
Dog = 9t + 59 + 9t + 75 + 4¢3 + 5t
p3g = 3t12 + 710 - 7¢t 4 12t2 + 10

D3 = 5t + 8% + 67 + 11¢° + 3t3 + 6t
D3y = 6t12 + 3t10 1 5¢6 1 8% 1 8¢2 9
D3z = 11610 4 5¢% + 7¢7 + 1165 + 4¢3 + 12¢
D3g = 912 4+ 11810 + 11¢8 + 4¢° 4 8t + 6t2 + 3
p3s = 8t + 99 + 11¢° +¢3 + 9t

pL=t

pag = Tt12 + 9t10 4 4¢8 1 86 4 12¢* + 12¢2 + 4
P37 = 5t +9t7 4+ 105 + 3t3 4 ot

pag =110+ 18 + 12t + 1184 + 2+ 5

Dag = 9t' + 4% + 3t + 45 + 2t3 + 2t

Py = 5612 + 3t10 + 48 + 1140 + ot + 442 + 1
Py = 8t +12¢% + ¢7 + 10t° + 12¢3 + 5¢

Dy = 10t12 4 6¢10 4 268 + 746 1 10tt + 72 + 9
Daz = 2t + 2t +¢7 41265 + 73 12t

Dag = 12¢12 + 5¢10 1 268 1 o6 1 ¢4 + 42 4 12
Das = 11¢10 4 8¢9 + 2t7 + 5¢° 4 4¢3 + 12¢

Py = 5t12 + 5¢10 + 11¢8 43¢0 + 10t* + 4

pa7 = 10t 4 4¢7 4 9t5 4 10t3 + 9t

pag = 10t12 4 1010 + 928 + 5¢6 4 8¢4 + 12¢2 + 1
Dag = 3t + 4t% 4 9t7 + 11¢° 4 283

pso = 4t1% + 12¢8 + 616 4 3¢ + 5¢2 + 11

psy = 6t° + 7 + 4t5 + 10t3 + 8t

ps = t12 + 4t19 4+ 10t8 + 7¢6 + 3¢t + 7t2 4+ 10
D53 = 3t1 + 3% + 55 + 63 + 4t

psg = 12 + 4810 4+ 428 + 916 + 74 + 10¢2 + 12
pss = 5t° + 7 + 5¢°

Dsg = 10t12 4 12410 + 248 1 446 4 11#% 4 92 + 3
pyy = TEL 4+ 11¢% + 1287 4+ 3¢5 + 213 + ¢

psg = 2t12 + 910 1 68 + 6t6 4 104 + 8t2 + 1
pso = 12611 + 3¢9 + 3t7 + 1165 + 6t% + 12¢

peo = Tt12 + 410 +¢8 + 7% + 9t2 4 10

per = 10t + 7¢7 + 103 + 11¢

Dep = 10t12 + 1110 4 8¢8 4 6t° 4 10t% + 3t2 + 6
pe3 = 10t 4+ 9 + 3¢7 4 3¢5 + 5¢3 + 10t

Doy = 6t12 + 10t8 + 9¢® + 10t* +9¢2 + 9

pes = 6t + 57 + 25 + 10t3 + 6t

pes = 12¢12 + 7¢10 4 7¢8 4 8t° + 5% + 3

per = 10t 4+ ¢7 4 8t

peg = 6t12 + 3t10 4 106 + 11¢2 4 4

peo = 2t + 2% + 8¢7 4 4t5 + 12¢3 + 6t

pro = 5t12 + 3t10 + 38 + ¢6 + 12¢% + 2¢2 + 10
Py = 10t 4 11¢% + 10t7 + 6t° + 6t3 + 4t

Dy = t12 410 1 88 + 86 - 3¢t + 6t2 + 9

Dy = 21+ 4t% + 9t + 35 + 11¢3 4 ot

prg = 2t12 +2t10 4 78 + 1145 + 7% 4 5¢2 48
prs = 11610 4+ 9 4+ 8¢7 + 10¢° + 11¢3 + 4¢

pre = 6t12 + 7¢10 4+ 1248 + 12¢6 + 12

Dy =8t + 8t° 4+ 3t3 + 2t

prg = 812 + 5¢10 1 12¢8 1 9¢6 4 5¢% 1 3¢2 14
Drg = 2t1 + 2% + 4¢7 + 95 + 10¢3 4 7t

pgo = 812 + 5¢10 1 38 1 1146 1 ot 142 41
pgy = 8t + 49 4 1187 + 5 + 13 4 11t

Dgy = 912 + 410 1 11¢6 1 8¢4 +3t2 4 9

pg3 = Tt + % + 107 + 55 + 10t3 + 8t

Dgg = 412 + 410 1 3¢8 1 46 1 2t 1 1142 + 12
pgs = 3t° + 5¢7 + 9¢3 + 12t

pgs = 3t12 + 910 4 8¢8 4 2¢6 4 + 62 + 2
pgy = Tt + 0t + 37 4+ 2t5 + 73 + 11¢

pgg = 11#12 4+ 6¢10 + 88 + 86 + ¢4 - 12¢2 + 3
pgo = 12t + 10t% 4 6¢7 + 125 4 8¢3 + 11t
Poo = 10t12 4 10¢10 4 3¢8 + 11¢4 + 11£2 +1
por =4t + 4t + 7T+ 5 + T3+ Tt

Doy = 812 + 810 + 7¢8 + 10t + 12¢* +¢2 4 10
Doz = 4t + 0% + 8t7 4 8¢5 + 3¢3 + 11¢

Dos = 5t12 + 88 + 105 + 5¢2 4 12

pos = 5t + 5t + 6t7 + 6t° + 3t

Dog = 812 + 910 + 68 + ¢6 + 214 92 4 3
por = 3t +9t% + 8¢5 + 5¢3 + 2t

pog = 12612 4 12¢10 + 78 + 1148 + 74 + 92 4 7
Pog = 11¢11 4 3¢ + 8¢7 + 12¢5 + 12¢3 + 4¢

Pioo = 11612 + 11410 + 448 4+ 5¢6 4 3¢4 + 5¢2 + 4
pio1 = 2t + 3t% + 107 + 8¢5 + 5¢3 + 10¢

Dioy = Tt12 + 3¢10 + 8¢8 4+ 96 + 9t* 4 442 + 10
P10z = 12t% + 9¢7 + 3¢5 + 743

p1oa = 5t12 + 12t10 4 6¢8 4 6t° + 4t* 4 5¢2 4+ 9
Digs = 8t 4+ 3t% + 12¢7 +¢° 4 8t3 + ¢

Diog = 5t12 + 7¢10 + 118 + 12¢% - 6¢* + 9¢2 + 3
pio7 = 10t° 4 11¢7 4 6t° + 23

Digg = 11¢12 + ¢10 + 3¢8 + 36 + 10¢* + 2¢% + 4
Digo = 2t11 4+ 9t% + 11¢7 +¢° 4¢3

Do =12 4+ 11610 + ¢8 + 88 + 11¢% + 4¢2 + 5
P11 = 3t +6t° +5¢7 23 -t

Diig = TH12 + 110 1 7¢8 4¢84 2t 1262 + 1
P13 = 8t +2t7 + 45 - 2t3 - ¢

Di1g = 312 + 7t10 4 1268 4+ 2¢6 4+ 3t* +3t2 4+ 9
P15 = 3t1 +6t° 4 73 + 12t

P16 = Tt1% + 9¢10 4 9¢® + 10¢° + ¢t + 82 + 12

pr17 = 2t + 5¢° 4+ 10t7 + 11¢° + 93 + 8¢

prig = 4812 + 4t8 + 12¢6 + 10t* + 112 + 4

prig = 118% + 4¢7 + 4t® + 7t3 4 2t

proo = 2610 + 4t8 + 56 + 114 + 102 41

p1o1 = 6t 4 6t° + 3t7 + 4t° + 6t° + 12¢

Diog = 312 + 9t® 4¢84 + 82 + 11

P1os = 6t + 9 4+ 8t7 + 6t° + 3 + 2t

Prog = 11812 + 11410 4 448 4 7¢6 1 11¢% + 2 + 10
D1os = 9t + 4t% + ¢7 + 10t° 4 12t3 + ot

Diog = 9t12 4+ 9t10 4+ 9t® 1 66 + ¢4 + 6t2 + 12
D17 = 4t1 4+ 7t% + 9t7 + 6t° 4+ 9t3 + 2t

Diog = t12 + 2¢10 4 6¢8 - ¢6 + 4t - 82 + 3

Piog = 12t% + 6t7 4+ 65 + 73 4+ Tt

prap = 10812 4 2610 4 748 4 8¢6 + 7t 4 41?2 + 1
D131 = 2t° +12¢7 + 45 +¢3 5t

P13y = 10¢12 4 4410 4 ¢8 - 10¢6 4 8% + 112 + 10
D13z = 2t +9t7 + 3¢5 4 113 + 7t

Dy3a = t12 + 12610 4+ 5¢8 + 5t + 3t4 + 1062+ 6
D13s = 261+ 5¢9 + 2¢7 4 3¢5 4 7¢3 4 3¢

prag = 8t12 + 410 4 78 1 86 1 6t4 + 2+ 9
Py =t 4+ 39 + 1187 + 4t> + 3 + 12t

p13g = Tt'2 4+ 8¢10 + 38 4 2¢6 + 6¢% + 3

D13o = 3t11 4 8t% + 7t7 + 9t® 4 12t3 4+ ot

Prag = 5t12 + 10t10 + 9t8 + 9t6 + 2t* + 9t2 4 4
pray = 5t + 9t° + 6t7 + 6t° + 8t + 6t

Prap = 3t12 4+ 4t10 + 10¢8 4 3t8 + t* + 6t2 + 10
P4z = 8t'1 +9t° + 9t + 5t° + 3t + 5t

prag = 312 +6t10 4 58 + 1146 + 11t + 72 + 9
pras = 3t1 4+ 9 + 1127 + 5¢° 4+ 11¢3 + 3¢

Drag = T2 + 910 1148 + 1188 + 2¢4 4 6t2 + 8
pra7 = 8t + 8% +t7 4 4t5 + ot

D1ag = 10t10 + 9t8 116 1 7¢% 4 8t2 + 12

Prag = 8% + Ot7 + Ot® + 12¢3 + 12t

Diso = 8t + 3t 4+ 10t + 4

prgy = Tt7 4+ 12t° + 3t3 4+ 9t

pisp =2t0 + ¢4+ 82 +1

Pz = 118° + 783 + 9t

Prsa = 12t +¢2 49

p1ss = 1183
Pisg = Tt2 + 12
D157 = 61

Piss = 117 42
P1sg = 8t° + 5t
Preo = 10t2 +3
pier = 1263+t
Doy = 4t 482 +1
Pre3 = 3 + 12t

Digs = 8t* + 82 + 10

Digs = Tt2 + 93 + 10t

Dreg = 10t + 4t2 412

prg7 = 10t° + 3t

Pieg = 12t° + 10t* + 2 + 3

Prgg = 3t° + 93 + ¢

piro =2t° + 3t +t2 4+ 7

P17 = 5¢7 + 8t

D7y = 1188 + 1182 +- 4

pi7s = t7 4+ 7t5 + 12t3 + 6t

P17 = 9t + 55 + 2t2 + 10

Di7s = t° 4 8t3 + 4t

p17g = 5t + 3t6 + 92 + 9

D17y = 6% + 11¢7 + 10¢3 + 12¢

p17g = 68 + 56 + 4t* + 82 + 3

P17 =3t% +11¢7 + 45 + 3 + 7t

Digo =0 +¢8 + 16 44 452 14

prgp = 8t° 4+ 9t7 + 13 + 8t

pigo = 11¢10 498 + 9¢6 4 5¢4 + 5

Digs = 8t + 2t° + 5¢7 4 9t° 4 10t + 5t

Diga = 5110 + 268 4 816 4 9t + 2 +1

pigs = 12610 + 1129 4+ 12¢7 + 5¢5 + ¢34 11¢
D1gg = 4t12 + 5t10 4 5t 4 3t2 + 9

pigy = 11811 + 2t% + 8t7 + 6t° + 4¢3 + 8¢

pigg = 8t1% + 4¢10 4 1126 4 2¢% 4 2¢2 + 12
P1gg = 6t + 11t% + 57 + 6t° + ¢3 + 3¢

Proo = 12¢12 + 610 + 6¢8 + ¢6 + 2t* 4 8t2 + 4
p1or = 2t + 129 + 65 + 10t3 4 12t

Diog = 5t12 + 12¢10 -8 4+ 26 4 3¢4 1+ 3¢2 4 1
Digz = 11t11 + 12¢7 4 9¢5 4 4¢3 4 12¢

P1os = 10t10 + 10t8 + 3t® + 6t* + 10t2 + 11
Pros = 12611 + 8% 4 4T 45 T3 £ 7t

Pigg = 11¢12 + 410 48 4 66 + 12¢% -2 + 10
Digy = 2t11 4+ 3¢% + 10t7 + 95 + 33 4 11t
Digg = 9t12 + 8¢10 + 7¢8 4 56 + 9¢t 4 52 + 12
Digo = Tt' 4 7t% + 10t7 + 3¢5 + 5¢3 4 3¢

Dogo = 3t12 + 11#10 4+ 78 + 12¢5 + 10¢% + 10t2 + 3

Doo1 = 6t + 2t% + 7t7 4+ 115 + ¢3 4 3¢
Pogz = 11812 + 11610 4 6¢8 + 4¢5 + 9t* + 1
Dogs = 9t 4+ 7+ 12¢5 + 93 4 12t

Dogs = 912 + 9810 - 12¢8 + 114 4 2¢% 4 3t2 + 10

Dogs = 4t11 1% 4 127 4 6t° + 743

Pags = t12 + 38 + 8t° + 4¢t + 112 + 6

Dog7 = 8t° +10t7 +¢5 +9t3 + 2t

Paog = 10612 +¢10 4 9¢8 4 5¢6 + 4% + 5¢2 4+ 9
Dogg = 4t +4¢% 4 11¢° + 83 + ¢

Poro = 10¢12 + ¢10 4+ ¢8 1 12¢6 + 54 + 912 + 3

po1p = 11¢° + 10t7 + 11¢5

Do1g = 912 + 3¢10 + 7¢8 - ¢6 6t 4 12¢% -4
Dors = 5t + 6t° + 3t7 + 4t° 4 7t3 + 10¢

Pops = T2 + 12610 4 8¢8 4 8¢6 + ot* 4 2t2 + 10
Pors = 3t1T + 4t% + 4t7 + 6t° 4+ 83 4 3t

Po1e = 5t12 + 10 + 10t8 + 56 4 12t2 4+ 9

Poy7 = 9t + 5¢7 4+ 93 + 6t

Porg = 912 + 6¢10 + 2¢8 + 86 - 9tt 4t? + 8
Porg = Ot + 10t° 4 47 + 45 + 1143 4+ 9t

Pogo = 812 + 9t8 + 12¢6 + 9tt 4 12t2 4 12

Dooy = 8t 4+ 1187 4 7¢5 4+ 9¢3 + 8t

Doy = 3t12 + 5¢10 1 5¢8 4 26 4 11¢2 4

Pons = Ot +10t7 4 2t

Doga = 8t12 + 4¢10 + 910 + 6¢2 + 1

Dogs = TtH + 7¢% + 27 +¢5 4+ 33 4 8¢

Poge = 11812 + 4¢10 4 4¢8 4 10¢° + 3¢4 + 7¢2 + 9
Doy = 9t + 6t% + 9t7 + 8¢5 + 883 + ¢

Poog = 10t12 4 10¢10 4 28 4 2¢6 + 4¢% 4 8¢2 + 12
Pong = THIT + 19 + 12t7 + 4t5 4 613 + 12¢

Dosgo = Tt12 + 7t10 4+ 5¢8 + 66 + 5t4 + 1182 4 2
Pogy = 6t + 10t + 27 4 9t° + 6t3 4 ¢

Do3p = 8t12 4+ 5¢10 4 3¢8 + 36 + 3

Doss = 27 + 2t5 4+ 4¢3 + 7t

Dosa = 2612 + 11410 4+ 3¢8 4+ 1265 + 1144 + 412 +1
Dogs = Tt 4+ 789 + ¢7 4+ 12t° + 9¢3 + 5¢

Poge = 2t12 + 11¢10 + 4¢8 + 6¢6 + 12t* + 10t% + 10
Dog7 = 2t11 + 19 + 6t7 + 10t° + 10t3 + 6t

Poss = 12812 4+ ¢10 4 66 + 2% + 4¢2 + 12

Pogg = 5t + 10t + 9¢7 4+ 11¢° + 93 + 2¢

Doao = 12 + t10 4+ 4¢8 + 10t8 + 7t* + 6t% 43
Poay = 4% 4+ 1187 + 12t3 4 3t

Doas = 4t12 4+ 12610 4 218 4 7¢6 1 10t 4 8t2 + 7
Poas = 5t + 12t° 4 47 4 75 + 5¢3 + 6t

Pogg = 6112 + 8¢10 4 28 1 26 1 10t* + 3t2 4
Poas = 3t1T + 9t% + 8t7 + 3t> 4 2t3 4 6t

Posg = 9t12 + 9t10 4 4¢8 1 6t + 6t2 + 10

Dogr =t ¢9 + 5¢7 + 10t5 + 5¢3 + 5t

Doag = 2612 + 2¢10 4 5¢8 4 o6 4 3t4 + 102 49
Posg = t11 + 12t° + 2t7 + 2t5 + 4¢3 + 6t

Poso = 11812 + 2¢8 + 9¢6 + 1142 + 3

Posy = 1181 4+ 11¢° + 8¢7 + 8t° + 4t

Dosy = 2t12 4+ 1210 4 8¢8 4+ 100 + 7% 4 122 + 4
Posg = 4t + 12¢° + 25 + 1183 + 7t

Posa = 3t12 + 3¢10 4+ 58 1+ 6¢6 + 5t + 12t2 4 5
Doss = 6t +4t% + 27 + 3¢5 + 3¢5 + ¢

Posg = 6112 + 6¢10 4+ ¢8 4 11¢6 + 4¢% + 11£2 41
Dosy = TEM + 489 4+ 9t7 4 2t° 4+ 1143 + 9¢

Dosg = 5t12 4 4¢10 4 268 + 1260 4 12t* +-t2 + 9
Pogg = 3t° 4 12t7 4 4t5 + 5¢3

Dogo = 11t12 + 310 1 8¢8 1 8¢6 + 4 + 11¢% 4 12
Dog1 = 2t + 4t% + 3t7 + 105 + 23 + 10¢

Doy = 11t12 + 5¢10 1 6¢8 4 3¢6 4 8¢* 4 12t2 + 4
Dogz = 9t° + 6t7 + 85 4 7t3

Dogs = 6t12 + 10£10 448 4 4¢6 1 9tt + 742 1
Dogs = Tt + 129 + 6t7 + 10t° 4 103

Pass = 10812 + 6t10 + 10¢8 + 2¢° + 6% +¢2 + 11
Doy = 4t11 +8t% + 11¢7 + 7¢3 + 10t

Dosg = 5t12 + 10£10 4 5¢8 6 + 744 + 3¢2 + 10
Dogo = 2t + 7t7 + 5 + 73 + 10¢

Poro = 4t1% + 5¢10 4 3¢8 + 76 + 4t 4 4¢2 1 12
popp = 4t + 8t% + 5t3 4 3t

Dory = 5t12 4+ 12410 1 12¢8 1 9¢6 1 5¢% 4 2¢2 13
Dora = Tt 4+ 118% 4+ 9t7 + 6¢5 + 12¢3 + 2t

Do7a = t12 + 8 +3t8 1 9t* 4 6t2 4 1

Pors = 6t° +t7 +t5 +5t3 4+ 7¢

Dorg = Tt10 + 8 + 1145 + 6t% + 92 + 10

Dorr = 8t11 4 8t% + 47 + 5 + 83 4 3¢

Dorg = 4t12 + 128 + 6 + 10t + 2t2 1 6

Dorg = 8t 4+ 10¢° + 27 + 8¢5 + 10t3 + 7t

Dogo = 6t12 4 6t10 48 + 5¢6 4 6¢* + 102 + 9
Dog1 = 12¢11 +¢% 4+ 10¢7 + 95 + 3¢3 + 12¢

Dogo = 12¢12 + 12¢10 + 12¢8 4 8¢6 4 10t* + 8¢2 + 3
Dogs =t + 5t + 12¢7 + 8¢5 + 123 + 7t

Doga = 10812 + 7£10 1 88 1 10¢6 + ¢4 + 2t2 + 4
Dogs = 3t° + 87 + 85 + 5¢3 + 5¢

Doge = 912 + 7¢10 4+ 5¢8 + 26 + 54 + ¢2 4 10
Dogy = Tt + 3t7 + t° + 103 + 11¢

Pagg = 9t1% + 10 + 10¢8 + 9¢6 + 2t* + 6t% + 9
Dogo = Tt + 12t7 + 4¢5 + 6¢3 + 5¢

Dogg = 10812 + 3¢10 4 11¢8 + 1145 + 4¢* + 92 + 8
Pogr = Tt + 118% + 7¢7 + 4t + 5t3 + 4t

Dogy = 2t12 + 10 - 5¢8 4 2¢6 1 8¢4 + 10¢2 + 12
Dogs = 10t1 + 4¢% + 6t7 +¢° 4 10t3 + 3¢

Dogs = 5112 + 2¢10 4 448 1 746 1 8¢2 + 4

Dogs = 4t + 2t% + 5t7 4 125 + 33 + 12¢

Dogs = 11812 + 9¢10 - 12¢8 + 12¢6 + 7¢4 + 12¢2 + 1
Pogy = 11811 + 12¢% 4 8¢7 4 85 4 2t3 4 8¢

Dogg = 4t12 + 10 4+ 9¢8 + 45 + 10t% + 82 + 9
Dogg = 2t 4+ 12¢° 4+ 12¢7 + 115 + 4¢3 + 11¢
D3gg = 4t12 + 8¢10 + 11¢8 + 6t° + 6t + 5¢2 + 12
pagr = 4t + 10t° + 67 + 11t 4 6t3 4 4t

pagy = 512 + 12t10 4 6t + 6t° + 7t* 4 8t% 4 2
D3z = 2t11 4 2t° +10t7 4+ ¢° 4 12t

paos = 910 + 12t8 4 10¢° + 5t 4 2¢2 + 3

pags = 2t° + 12¢7 + 12¢5 + 3¢3 + 3t
D3gs = 2t8 + 40 + 9tt + 1

Dag7 = 5t7 4 3t° + 413 4+ 12t

D3og = T8 + 10t* + 2¢2 + 10

D3gg = 6t° 4 5t3 + 12t

P310 = 3t* + 10t2 + 12

pa11 = 683

P30 = 582 + 3
D313 = 8t

P3pq = 62 + 7
p3ys = 2t3 + 11t
P36 = 92 + 4

p317 = 3t + 10t

D318 = t* 4+ 2t + 10

D319 = 103 + 3¢

Pago = 2t* +2t2 + 9

D3g1 = 5t° 4 12t3 4 9t

D3gy = 9t + 42 4+ 3

Pags = 9t° + 4t

D3ga = 3t8 4+ 9t + 102 + 4

D3gs = 4t° 4 12t3 4 10t

Dage = Tt8 +4t* 4 10t2 + 5

Pagy = 117 + 2t

D3og = 6t° +6t2 + 1

Pang = 10¢7 + 5¢° + 3¢3 + 8¢

pazo = 1268 4+ 115 + 72 4+ 9

P33 = 1085 +2t3 + ¢

Pagg = 1168 4 4¢6 4 12¢2 + 12

D3zz = 8t + 6t7 + 93 + 3t

Daza = 8t8 + 11¢0 + ¢4 + 212 + 4

Dags = 4t° + 6t7 + t° 4 10t3 + 5t

pazg = 10t10 + 10¢% + 10t + 10¢* + 112 + 1
pagr = 2t + 12t7 4 103 + 2t

Dazg = 6t10 + 128 + 12¢6 + 11¢4 + 11

Dazg = 2¢11 + 7¢% + 11¢7 + 12¢° 4 9¢3 + 11¢
Daap = 1110 + 7¢8 - 2¢6 1 12¢* 4 10¢2 + 10
D3aq = 3t + 6t° 4 37 + 115 + 103 + 6t
Daap = 12 + 11410 4 11#% 4 4¢2 + 12

Dagz = 6t + 7t% + 27 4+ 8¢5 -3 + 2t

Dagq = 2612 + 10 1 6¢8 4+ 7t 4 7¢2 43

Dags = 8t11 + 6t° + 11¢7 + 8¢5 + 10t + 4t
Daag = 3t12 4+ 8t10 4 8¢8 + 106 + ¢t +2t2 + 1
pagr = T + 3¢9 + 8t° + 9t3 + 3¢

pagg = 1112 + 310 + 1068 + 7¢5 + 4¢* + 4¢2 + 10
Pasg = 6t + 3¢7 +12¢5 + 3 + 3¢

Daso = 910 + 9t8 - 4t8 - 8t* +-9t2 16

pasy = 3t11 4 10t% +¢7 + 10t5 + 5¢3 + 5t

pasy = 6¢12 + 10 + 1068 + 8¢5 + 3t* + 10t2 + 9
Dasz = Tt1 4 4t% + 9t + 12¢5 + 4¢3 4 6t

pasy = 12612 + 210 + 5¢8 + 1146 + 12t% 4 1182 + 3
Dass = 5t11 4+ 5t% + 0t + 4t5 4 1143 4 4¢

pasg = 4t12 + 6¢10 4 5¢8 + 3¢5 + 9t* - 9¢2 + 4
Dasy = 8t1 4 7t% + 5¢7 + 6t° + 10t3 + 4t

D3sg = 6612 + 6¢10 + 88 + ¢6 + 12t4 + 10

Dasg = 12¢11 + 10¢7 4 3¢5 4 12¢3 + 3¢

pago = 12612 + 12¢10 4 3¢8 + 6¢° + 7t + 4¢2 4+ 9
pagy = t11 + 10t° + 3t7 + 85 + 5¢3

D3y = 10¢12 + 4¢8 4 2¢6 1+ % 1 6t% + 8

Dagz = 2t° + 9t + 10t5 + 1263 + 7t

Dagy = 912 + 10£10 + 1248 4 11¢6 + ¢4 + 1142 + 12
Dags = 11+ t° + 6t° + 2t3 4 10t

p3gs = 9t12 + 10t10 + 10t + 3¢6 + 1144 + 12¢2 + 4
pagy = 6t° + 97 + 6t°

pasg = 12612 + 410 + 5¢8 + 10¢° + 8% + 3t% + 1
Pago = 11811 + 8t% + 4t7 + ¢5 + 5¢3 + ot

paro = 5t12 4+ 3¢10 268 + 2t5 + 12¢4 + 7t2 + 9
payy = 41 4+ 19 +¢7 + 85 + 23 + 4t

parp = 11812 + 10¢10 4 9¢8 + 11¢% + 3¢2 + 12
Darg = 12t1 +11¢7 +12¢3 + 8¢

D3y = 12¢12 + 810 - 7¢8 - 2¢6 4 12¢4 + 2 42
Dars = 12¢11 + 9% +¢7 + ¢5 + 6t3 4 12¢

D3y = 2t12 + 128 + 36 + 12¢* 4 3¢% + 3

P37y = 2t + 6t7 4 5t° 4 12t3 + 2t

Dayg = 4812 + 11#10 4+ 11¢8 + 7¢5 + 6¢2 + 1

D379 = 12t 4+ 9t7 4 7¢

pago = 2t12 + 10 4 126 + 82 + 10

pagy = 5t 4 5¢% + 7t7 + 10t5 + 4¢3 + 2t

Pagy = 612 + 10 + ¢8 4+ 016 4 4% 4 5¢2 + 12
paga = 12t + 8% + 12t7 + 2t° 4 2¢3 + 10¢

D3gs = 9t12 + 9t10 1 7¢8 4 76 1 ¢4 1 2t2 43
Pags = 51 + 10t° + 3t7 + 5 4 8¢3 + 3¢

D3gs = 5t12 + 5¢10 + 11#8 + 8¢% + 11¢* + 62 + 7
Dagy = 8t11 4+ 9t% + 7¢7 + 12¢5 + 83 4 10t

pagg = 2¢1% + 11810 + 428 4 4¢% 1+ 4

Dagg = Tt7 + Tt + ¢34 5t

D3go = Tt12 + 6t10 + 4¢® 4 3t6 + 6¢4 + 2 + 10
D31 = 5t 4+ 5¢% + 10t7 + 3¢° + 12¢3 + 11t

Dagy = Tt12 + 6¢10 + ¢8 1 8¢% 4 3t + 92 4+ 9
P3g3 = Tt11 +10t° + 8¢7 + 95 4 9t3 + 8¢

P3gs = 3t1% 4 10t10 + 86 + 7t 12+ 3

Dags = 11t +9¢° 4+ 12¢7 + 6t° 4 12¢3 + 7t

P3ge = 10612 + 10¢10 4 8 + 9t® 4 5¢4 + 82 + 4
pagy = t° + 6t7 + 3t3 4 4t

Pagg = t1% + 3t10 + 78 4+ 5t + 9¢* + 2% + 5

Dagg = 11t + 3% + ¢7 4 5¢° 4 113 + 8¢

Dago = 8t12 + 2¢10 1 7¢8 1 70 pott 442 11
paop = 4t + 12t% 4+ 2t7 + 4¢5 + 7t3 4 8t

Dagy = 12¢12 4 12¢10 8 1 8¢4 +-8t2 + 9

Dags = 1081 + 10t° + 11¢7 + 985 + 113 + 11¢
Daos = Tt12 + 7¢10 + 11#8 + 12¢5 + 4¢* 4+ 92 + 12
Paos = 10811 + 3t% + 7t 4+ 7¢5 + ¢3 + 8¢

Daos = 6t12 + 7t8 + 12t° + 6t2 + 4

Dagr = 6t + 6t° + 27 4 2t° - ¢

Daog = Tt12 +3t10 + 268 4 96 + 5t - 3t2 + 1
Dagy = 11 + 3% + 75 + 63 + 5t

Darp = 4t12 + 4¢10 + 1148 + 8% + 11¢4 + 32 + 11
D1 = 8t 10 + 77 + 4t5 + 4¢3 + 10t

D41 = 8t12 + 8t10 + 108 + 6t° + ¢* + 62 + 10
Pz = 5t + 9 + 12¢7 4 7t5 4613 + 12t

Para = 11812 + ¢10 4+ 7¢8 4 3t6 + 34 + 10¢2 + 12
Dars = 4t° 4 3t7 + 5 + 1143

Darg = 6612 + 4t10 + 2¢8 4 26 + 10t* + 6¢% + 3
Doy = TEL 9 + 47 +9t5 1 T3 ot

Da1g = 6612 + 11#10 4 8¢8 4 4¢6 - 2t +-3¢t2 + 1
Darg = 12t° + 8t7 + 2t5 4 5¢3

Dago = 8t12 4+ 9t10 -8 + ¢6 + 12¢% 4+ 5¢2 + 10
Dagy = 5t11 4 3t% + 87 + 9t® 4 93

Dagy = 912 + 8t10 4 o8 + 75 1 8t4 + 10t 4 6
Dags = 11+ 2% + 67 + 53 + 9t

Dagg = 11812 + 910 + 1148 4 10¢6 + 5¢4 +4t2 + 9
Dags = Tt + 5t7 4 105 + 5¢3 + 9t

Daog = t12 + 11410 + 448 + 56 + ¢4 142 + 3

Pagy = 11 + 2% + 11¢3 4 4t

Dagg = 11812 + 310 + 3¢8 + 126 + 1184 + 72 - 4
Dagg = 5t11 + 6t° + 12¢7 + 8¢5 + 33 + 7t

Dago = 10t12 + 10t® + 4¢6 4 12t* + 82 + 10

Daz1 = 8t° + 10t7 + 105 + 11¢3 4 5¢

Pazp = 510 + 108 + 6¢° + 8¢* +12¢2 + 9

Dazz = 2t +2t% + 7 4+ 10t5 + 2¢3 + 4t

Daza = 12 + 3t + 10t8 + 9t* + 72 48

Dags = 2t + 9t% + 7t7 + 2t5 4 9t3 4 5t

Daze = 8t12 4 8t10 4 108 4+ 11¢6 + 8% 4 9¢2 + 12
Dazy = 3t1 4+ 10¢° 4+ 9t7 + 12¢5 + 4¢3 + 3t

Dasg = 3t12 +3t10 4+ 38 + 26y ott + 212 + 4
Dago = 10t1 + 11¢° + 3¢7 + 2t5 4 3¢3 4 5¢

Dagp = 9t12 +5¢10 4268 1ot p10tt + 72 41
Dagq = 4t° 4+ 2t7 + 2¢5 4 1183 + 11¢

Pagp = 12612 + 5810 + 1148 + 7¢5 + 1124 + 1062 + 9
Dagz = 5t° + 47 + 105 + 9¢3 + 6t

Daga = 12¢12 + 10¢10 + 98 + 12¢6 4 7¢* 4 8¢2 + 12
Dags = 5t +3¢7 +¢5 483 + 11t

Page = 9t12 + 4t10 4 6t8 + 6t + ¢4 + 12t2 4 2
paar = 5t 4+ 6t% + 57 + 5 + 1183 + ¢

Pagg = 712 + 10£10 + 1168 + 7¢5 + 2% + 9¢2 4 3
Dago = 9t + 1% + 8¢7 + 10t° + 9t + 4t

Paso = 11812 + 7¢10 + ¢8 1 5¢6 + 212 11

Dasy = tH + 789 + 1187 + 3¢5 4 4¢3 + 3¢

Pasy = 6¢12 4 12¢10 + 3¢8 4+ 3¢6 4 5¢4 + 3t2 + 10
Dasz = 6t11 4+ 3¢% + 2t7 + 25 4 7¢3 4 2t

Dasg = t12 +10t10 4 12¢8 46 + ot* 4 2¢2 + 12
Dass = Tt + 3t% + 3t7 + 6t° + 3 + 6t

Dasg = t12 +2t10 + 68 + 8¢6 4 8¢t + 112+ 3
Dasy = 11+ 9t + 87 + 65 + 83 + ¢

Pasg = 11812 + 310 + 8¢8 + 8¢6 4 B¢t + 2t2 + 7
Daso = Tt 4+ 7t% + 9t7 + 10t5 + 3t

Dago = 12610 + 38 4 9¢6 + 11¢% - 7¢2 + 4

Dagy = Tt0 + 37+ 3t5 + 4¢3 + 4t

Dagy = Tt8 + 18 + 12t + 10

Pagz = 11t7 + 485 +¢3 + 3¢

Dugs = 5t8 + Ot4 + 7¢2 + 9

Pags = 8t° + 11¢3 + 3¢

Dags = 4t* +9t2 + 3

Pagy = 8t

Pagg = 1182 + 4
Dago = 2t

p470 = 8t2 + 5

Pa7y = Tt3 + 6t

Pary =12t +1

Pa73 = 4t3 4 Ot

Pa7g = 10t4 4+ 72 4+ 9

Pa7s = 9t3 + 4t

Parg = Tt + T2 + 12

pa7y = 115 + 3¢3 4+ 12¢

Parg = 12t* + 10t%2 + 4

Parg = 12t° + t

Pago = 48 + 12t* + 9t2 + 1

Dag1 = t° + 3t3 4+ 9t

Dagy = 5t8 + ¢ 4+ 9t2 4 11

Dags = 617 + 7t

Pags = 8t° + 8t2 4 10

Dags = 97 + 11t° 4 4¢3 4 2t

Dags = 3t& + 60 + 5¢2 4 12

Dagy = 9t° 4+ 73 + 10t

Dagg = 6t + 0 + 3t2 4 3

Dagg = 2t° + 87 + 12t3 4 4t

Pago = 2t8 + 60 + 10t* + 7t2 + 1
Dag1 = t° + 8t7 + 10t° 4 9t + 11¢
Pagy = 910 + 9t + 9t + 9¢* + 6t2 + 10

Dags = Tt +3t7 +9t3 + 7t

Pags = 810 + 3t® + 3t® 4 6t* + 6

Dags = Tt + 5t° 4+ 6t7 4 3t° 4 12t3 + 6t

Dags = 6t10 +5¢8 4 75 + 3¢+ 4912 + 9

Dagy = 4t + 8t% + 4t7 + 6t5 + 9t3 + 8t

Dags = 10t12 + 6¢10 + 6t4 + 2 + 3

Dago = 8t11 4+ 5t% + 7¢7 + 25 4 103 4+ 7t

Dsoo = Tt12 + 10£10 4 8¢5 + 5¢4 52 + 4

psor = 2t + 8t% +6t7 4 2t° 4 9t3 - ¢

Dsoy = 4t12 + 2¢10 4+ 2¢8 4 96 5¢4 4 72 + 10
Dsos = 5t 4 4t% + 2t5 + 1263 4t

Dsos = 6812 +4¢10 + 98 + 56 + ¢4 12 4+ 9
Dsos = 8t + 4t7 + 3¢5 4 103 + 4t

Dsos = 12¢10 + 12¢8 + ¢0 - 2% + 122 + 8

psoy = 4t +9t% + 10t7 + 9t5 + 11¢3 + 11¢
Psos = 812 + 1010 + 9t® + 260 4 4t + 9¢2 + 12
Dsgo = 5t 4+ 1% 4+ 12¢7 + 3¢5 4¢3 4 8t

D510 = 312 + 7t10 + 1148 + 6t6 + 3t* + 6t% + 4
ps11 = 1181+ 11¢°% + 12¢7 +¢5 4 6t3 + ¢

Do1p = t12 + 810 4 1168 + 446 1 12¢4 + 12t + 1
Ds1g = 2t1 + 5¢% 4 11¢7 + 8¢5 + o3 + ¢

Ds1a = 812 + 8t10 + 28 + 10t6 + 3t 4 9

Ds1s = 3t1 +9t7 + 45 4+ 3t3 4 4t

D516 = 3t12 4 3t10 4 4¢8 4 86 + 5t +¢2 + 12
Dy = 1081 + 9% 4+ 4¢7 4 2¢5 + 1143

ps1g = 9t12 + 8 4 7¢6 4 10t* + 8t2 + 2

Ds1o = Tt% +12t7 + 95 + 3t3 4 5¢

Do = 12612 + 910 + 3¢8 1 6¢6 4 10¢* 4 6t% + 3
P51 = 10t +10¢° + 8t° + 7¢3 + 9t

Dspp = 1212 + 910 + 018 4 426 4 6¢4 + 3t2 + 1
Dsoz = 8t° 4 12t7 4 8¢5

Dsog = 3t12 + 10 + 1168 + 96 + 2% 4 4¢2 1+ 10
Dsos = 6t + 2t% + 7 4+ 1085 + 11¢3 + 12¢

Dsge = 11812 + 410 + 748 4 7¢6 4 3¢ + 5¢2 4 12
Doy =t 4 10t° + 107 + 265 + 73+ ¢

Dsog = 6t12 4+ 9t10 4 1248 - 6¢6 + 4¢2 + 3

Dsog = 3t + 6t7 + 3t3 4 2t

P30 = 3t12 4+ 2¢10 4 58 4 7¢6 + 3¢t + 10¢2 + 7
ps31 = 3t11 4+ 12¢% + 10t7 + 105 + 8¢3 + 3¢
Dugg = Tt12 +3t8 + 418 1+ 3¢t4 + 42 4 4

Ps3z = Tt 4+ 8¢7 + 115 4 3¢3 + 7t

Dsaa = t12 + 610 + 6¢8 + 5¢° 1 8¢2 + 10

D535 = 3ti + 12t7 + Bt

Ds3g = Tt12 + 10¢10 4 3¢® + 2t2 + 9

pszy = 11811 + 1189 + 5¢7 + 9t° + 3 4+ 7¢

Ds3g = 8t12 4+ 10¢10 + 10t8 + 12¢6 + % 4 11¢2 + 3
Ds3o = 3t11 4+ 2¢% + 3¢7 + 75 4+ 73 4 ot

Dsao = 12¢12 + 12¢10 4 5¢8 + 526 + 10t* + 72 + 4
Dsar = 1181 + 9% 4 4¢7 + 10t5 + 263 + 4t

Dsag = 11812 + 11410 + 6¢8 + 26 + 6t + 82 + 5
Dsgz = 2t + 12t + 5¢7 + 3¢5 + 2¢3 1 ot

Doaa = Tt2 + 610 148 16 11

Dsas = 5t7 4 5t° + 103 + 11t

Dsag = 512 + 8t10 4 ¢8 1 4t8 1 8t* + 10t2 + 9
Dsay = 11¢1 4+ 11¢°% + 9¢7 + 4t + 3¢3 + 6t

Dsag = 5t12 + 8¢10 4 10¢8 + 2t° + 4¢t + 12¢2 + 12
Dsag = 5t + 9t% + 2¢7 + 125 + 12¢3 4 2¢

Dsso = 4t12 + 9t10 + 2t6 + 5t + 10t% 4 4

Dss1 = 6t + 129 + 3t7 + 8¢5 + 3¢3 + 5¢

Dssy = 9t12 4+ 9¢10 4108 4+ 12¢6 + 1144 + 22 4 1
pss3 = 10t% + 8¢7 + 4t3 + ¢

Dssg = 10812 + 4410 1 5¢8 1 1146 + 12¢4 + 7¢2 4 11
Dsss = 6t + 4t% + 10t7 + 11¢° + 6¢2 + 2t

Dssg = 2612 + 7¢10 + 58 + 56 + 124 +¢2 + 10
Dssy = 11+ 3t + 77 + ¢5 4 5¢3 4 2t

Dysg = 3t12 4 3t10 4 10¢8 4 2t% + 2t2 + 12

Dsso = 9t + 9t + 6t7 + 12¢5 + 6t3 + 6t

Dsgo = 5t12 + 5¢10 + 6¢8 + 36 + ¢4 4 12t2 + 3
Dsg1 = Ot + 4t° + 5¢7 4 5¢° 4 10t3 + 2t

Dsgo = 812 + 5t8 4+ 3t6 - 8t2 41

Doz = 8t 4 8t% + Tt7 + 75 4 10t

Dsga = 5t12 + 4¢10 + 78 + 12¢6 4 11¢% + 442 + 10
Dses = 1081 + 4¢° 4 5¢° + 83 + 11¢

Dsgs = t12 + ¢10 + 6t8 + 26 + 6% + 4t2 + 6

pser = 2t11 4 10t% + 5¢7 + ¢° 4 3 + ot

Dseg = 2t12 4+ 2¢10 4 9¢® 1+ 86 + 10t4 + 82 + 9
Pseo = 11t +10t% + 3¢7 + 5¢° + 83 + 3¢

Ps7o = 6¢12 + 1010 + 5¢8 + 4¢% 4 4¢* + 9t2 + 3
ps7 = 0 + 4t7 4 10t° 4 6t3

Ds7y = 8t12 + 10 1 748 4+ 746 4 ott 4 82 4
Ds7s = 5t + 108% + ¢7 + 125 + 53 + 12¢

Ds7s = 8t12 + 6¢10 + 268 -6 4 7t 4+ 442 + 10
D575 = 3t° 4 2t7 + 7t5 4 113

Ds7g = 2t12 + 12¢10 4 10¢8 + 1086 + 3¢4 + 11¢2 4+ 9
pyrr = 111+ 4¢% 4 2¢7 + 1245 4 1243

ps7g = 12¢12 + 210 4 128 + 5¢6 4 2¢4 1 9¢2 1+ 8
Ds7g = 1011 + 79 + 87 + 11¢3 4 12t

Psgo = 6612 + 12t10 4 6¢8 4 9¢0 + 114 + ¢2 4 12
psgy = 5! + 1187 + 95 + 11¢3 4 12¢

Dsgy = 10t12 + 610 8 + 11¢6 4 10t + 102 + 4
psgz = 10t + 7% 4 6t3 + ¢

Dsga = 6812 + 4¢10 + 4¢8 + 30 + 6t + 5¢2 + 1
Dsgs = 1181 + 8% 4+ 3¢7 + 2¢5 + 4¢3 4 5¢

Dsgs = 912 +9t8 + 16 + 3t* + 2t2 + 9

psgr = 2t° + 97 + 95 + 613 + 11¢

Dsgg = 11¢10 + 0t8 + 86 + 24 + 3t2 + 12

Dsgo = Tt 4+ 7t% + 107 +9¢5 + T3 + ¢

Dsgo = 10¢12 4 4¢8 + 9¢6 4 12¢% 4 5¢2 + 2

psor = Tt 4+ 12t% + 5¢7 4 7¢5 + 1263 + 11¢
Dsgy = 2t12 + 2¢10 + 9¢8 4 6¢6 + 2¢% 4 12¢2 + 3
Dsgg = 4t11 4+ 9t% + 12¢7 + 3¢5 + ¢34t

Dsgs = 4t12 +4t10 4 4¢® 1 76 p 1264 + 742 1
Dsos = Ot 4 6t% + 47 + 75 4 4¢3 + 11t

Dsgs = 12612 + 11¢10 + 7¢8 + 12¢6 4 9¢* + 5¢2 + 10
psgy = t° + Tt7 + 75 + 6t + 6t

Dsgg = 3t12 + 1110 4 6¢8 + 5¢° + 6¢* + 9¢2 + 12
Dsgo = 11¢° +- 7 4+ 9t® 4 12¢3 4 8¢

Pego = 312 + 9¢10 + 12¢8 4 3¢ + 5¢* 4 2t% + 3
Peor = 11t + 4¢7 + 10t + 2t3 + 6t

Deop = 12612 + ¢10 4 8¢8 4 8¢5 + 10t* + 3t2 + 7
Deoz = 11t + 8% + 11¢7 + 10t° + 6¢2 + 10t
Peos = 512 + 9t10 + 68 + 5t + 7t + 12¢2 + 4
Peos = 12611 +10¢% 4 2¢7 4 95 4 1263 + ¢

Peos = 6¢1% + 5¢10 4 108 + 116 + 72 + 10
Deo7 = 1081 + 5% 4 6¢7 + 4t +¢3 + 4t

Deog = 8t12 + 3¢10 + 48 4 4¢6 + 11¢4 142 + 9
Deoo = 8t 4+ 4t% + TtT + 75 4 53+ Tt

Pe1o = 10¢1% + 9t10 4 38 4 10t + 12t* + 7% + 3
pe11 = 5t 4 4t% + 4t” + 8t° 4 10t3 + 8t

Dero = 10t12 + 7¢10 1 8¢8 4 2t6 4 2t* 4 6t% + 4
De1s = 1081 + 12¢° + 2t7 4 8¢5 4 2¢3 + 10¢
Dora = 6t12 +4t10 4268 1 2t6 1 114 + 742 45
pe1s = 5t + 5t° + 12¢7 4+ 9¢5 + 4t

pe1s = 3t10 + 4t + 12t% + 6¢4 + 5t2 + 1

D1y = 5t + 4t7 + 45 3 4t

De1g = 5t& 4 10t6 + 3t* + 9

Dero = 67 + t° + 103 + 4t

Dego = 1188 + 12t* + 5¢2 + 12

Pgor = 2t° + 63 + 4t

Dege = t* +12t2 + 4

Pe2z = 2t°
p624 = 6t2 + 1
Deos = Tt

Peos = 2t% + 11

Deo7 = bt3 + 8t

Pe2s = 3t + 10

Deog = t5 + 12t

Dezo = 9t + 52 + 12
Degp = 12t3 + ¢

Dgay = 5t* 4+ 5t2 +3
Deaz = 6t° + 4t3 + 3t

Dgaa = 3t* 4+ 92 + 1

Dgas = 3t° + 10t

Deag = 0 + 3t* 4+ 12t2 4 10

Pea7 = 10t° + 4¢3 + 12t

Desg = 1168 + 10t* + 12t 46

Dgag = 8t7 + 5t

Deag = 2t0 +2t2 + 9

Dear = 1267 +6t5 + 3+ 7¢

Deag = 48 + 85 + 11¢% 4 3

Peaz = 12t° + 5t3 4 9t

Deaa = 88 +10t0 + 4t% 4 4

Deas = Tt° +2t7 +3t3 - ¢

Deag = Tt + 85 + 9t + 5¢2 + 10

Dear = 10t° + 2t7 4+ 9t° 4 12t + 6t

Deag = 12610 + 12¢8 +12¢8 + 12¢* 1+ 8¢2 + 9
Deag = 5t° + 47 + 12t3 4 5t

Deso = 2t10 + 4t8 4 4¢6 4-8t* 48

pes1 = 5t + 11t% + 8t7 + 4t° + 3t3 + 8¢

Deso = 810 + 11¢8 + 5¢6 + 4t + 12¢2 4+ 12
Dess = 11+ 2t +¢7 4 8¢5 4 12¢3 + 2t

Desa = 912 + 8t10 4+ 8% + 10t% + 4

Pess = 2t + 11¢% + 57 + 7t° + 9t3 + 5¢

Dese = 5t12 + 9t10 + 26 + 11¢% 4+ 11¢2 + 1

Desy = Tt + 2t% + 8t7 + 7¢5 + 123 + 10¢

Desg = 12+ 7t10 4+ 7¢8 4+ 125 + 11t + 582 4+ 9
Deso = 11¢1 +¢% 4+ 785 + 3¢5 +- ¢

Deso = 812 + 10 + 128 + 11¢% 4 10t + 10¢2 + 12
Deg1 = 2611 + 7 + 45 + o3 + ¢

Deea = 310 + 3t8 + 105 + 7t + 32 + 2

Degs = 11+ 12t° + 9t7 + 12¢5 + 6t3 + 6t

Dega = 2612 + 9¢10 + 12¢8 4 7¢6 4 ¢4 + 12¢% 4+ 3
Dees = 11t11 + 10t° + 3¢7 4 4¢5 4 103 + 2t
Dees = 4t12 + 5¢10 + 6¢8 4 80 + 4t 4+ 82 + 1
Deg7 = 6t + 6t° + 3t7 + 105 + 83 + 10t

Dees = 10t12 + 2¢10 4+ 6¢8 6 + 3¢% 4 32 + 10
Deso = Tt 4 11¢° 4 6t7 + 2¢° + 12¢3 + 10¢
Dgro = 2t12 + 2¢10 4+ 7¢8 96 + 4tt 4 12

P71 = 411 4+ 1267 45 4 4t% 4t

Dery = 4t12 + 4810 1 ¢8 4+ 260 4+ 11¢% 4+ 10¢2 + 3
Pera = 9t + 12° + 7 + 75 4 663

De7a = 12¢12 + 10¢8 + 5¢0 + 9t* + 2t2 + 7

Ders = 5t° + 3t7 + 12t5 4 4¢3 4 11t

Pere = 3t12 + 12t10 4 4¢8 4 8¢°0 4 9t* + 8t2 + 4
Perr = 9t + 9t° 4 2t5 4 5¢3 4 12t

Perg = 3t12 + 12t10 4 128 + ¢0 4 8¢* 4 4¢% + 10
Dero = 2t° + 37 4+ 2t°

Pego = 4t12 + 10t10 + 6¢8 + 12t5 + 7t + 2 4+ 9

pegy = 8t + 7t% + 10t7 + 9¢5 + 6t3 + 3t

Degy = 6612 + 10 4 5¢8 4 5¢6 1 4¢% 4 112 + 3
Pega = 10t +9t% 4 9t7 + 7¢5 + 5¢3 + 10t

Dega = 8t12 + 12¢10 4 38 + 8¢6 4 ¢2 -4

Dess = 4t + 8t7 + 4t3 4 7t

Degs = 4t12 + 7t10 + 118 + 5¢6 + 4¢t + 9t2 + 5
Degy = 4t +3t% + 9t7 4 9t5 4 2¢3 + 4t

Degg = 5t12 +4t® + 16 + 4t + 42 4 1

Desgg = bt + 2t7 + 6t° 4 4¢3 4 bt

Pego = 10t12 + 810 1 8¢8 116 + 2t2 + 9

Deor = 4t +3t7 + 11t

Degy = 5t12 + 9¢10 + 446 4 72 + 12

Deos = 6t11 4+ 6t° + 11¢7 + 12¢° 4 10¢3 + 5¢
Dega = 2t12 + 9t10 + 98 + 36 + 10t* + 6t% + 4
Deos = 4t11 4 7t% + 4t” + 5¢° 4 5¢3 + 12¢

Peos = 312 + 3¢10 4+ 11¢8 + 1140 + 9t* + 5t2 4 1
Deoy = 6t + 12t + 27 4+ 95 + 7¢3 + ¢

Peog = 6t'2 + 6¢10 + 88 4 7t + 8t* + 2t2 4 11
Dego = Tt11 4+ 3t% + 11¢7 + 45 + 73 4 12t

Proo = 5t12 + 8¢10 4 10¢8 + 105 + 10

Dro1 = 1187 4+ 11¢° + 9t3 + 6t

Drog = 11812 + 210 + 1068 + ¢6 4 2¢4 + 92 + 12
proz = 6t + 6t + 12¢7 + 5 4 4¢3 + 8¢

Drog = 11812 + 2¢10 + 08 + 746 -4 + 3¢2 4+ 3
Dros = 1181 +12¢°% + 747 4 3¢5+ 3¢3 + 7t

pros = t12 + 12610 + 7¢6 + 11¢% 4 9¢2 + 1

Dro7 = 8t11 43¢0 + 4t” + 2t5 4 4¢3 + 11¢

prog = 1212 + 12¢10 4 9¢8 + 3¢5 + 6t* + 7¢2 + 10
Drog = 9% +2t7 + ¢34 10t

prio = 9t12 + 10 + 11¢8 4 6¢° + 3t + 5t2 + 6
P11 = 8t + 1% 4 9t7 + 65 + 83 4 7t

prig = Tt12 + 5¢10 + 1168 + 1140 + 3¢* + 10¢2 + 9
prig = 1081 + 4¢% 4+ 5¢7 4 10t° + 11¢3 + 7¢

Drig = 412+ 4t10 4 9t 1Tt 1 742 43

prs = 1281 + 12¢° + 87 4 3¢5 + 8¢ + 8t

prig = 11812 + 11410 4 8¢ + 45 + 10t + 3t2 +- 4
prip = 1281 + 4% + 1167 + 1185+ 983 + 7t

prig = 2¢12 4+ 11¢8 4 4¢% + 2¢2 + 10

Do = 2t + 2t° + 5t7 4 5¢5 4 9t

Proo = 11812 + ¢10 - 5¢8 4+ 3¢5 + 6% +t2 + 9
Dror = Ot 19 + 11¢% + 2t3 4 6t

Droo = 10t12 +10¢10 + 8t8 4 76 + 8¢ +¢2 + 8
Droz = TtH +9t% + 11¢7 + 10¢° 4 10¢3 + 12¢
Drog = Tt12 4+ 7¢10 - 1248 - 2¢6 1+ 9t + 212 4 12
Pros = 6t + 0t + 4t7 + 1165 + 2t3 + 4t

Drog = 8t12 +9t10 4 11#8 -6 ¢4 1 1262 + 4
Dro7r = 10t° + 7 + 9t + 8¢3

Drog = 2612 + 10£10 4 5¢8 4 5¢6 4 12¢4 + 2¢2 + 1
Drog = 1181 +9¢% 4+ 10¢7 + 3¢° 4 11¢3 + 3¢

Dr3o = 2t12 + 8t10 + 78 4+ 10t8 + 5¢* + 2 + 9
pray = 4t° 4 Tt7 + 5t 4 6t3

Dr3p = Tt12 4 3t10 4 9t + 96 + 4¢* 4 6¢2 + 12
Draz = 6t + 10 4 77 4 3¢5 4 3¢3

Drag = 3t12 4+ 7¢10 4 3¢8 + 11¢6 + ¢t + 1262 + 2
Dr3s = 9t + 5t° 4 2t7 4 6t3 4 3t

Dr3g = 8t12 4 3t10 4 8¢8 + 12¢6 4 6¢* + 10¢% + 3
Drar = 11t11 + 67 + 12t5 + 6t3 + 3¢

Dr3g = 9t12 4+ 8t10 4 108 4+ 6t6 + 9t* + 92 + 1
Drag = 9t + 5¢° 4 8¢3 + 10t

Drap = 8t12 + 10 1 ¢8 1 446 1+ 8t + 1142 + 10
Praq = 6t 4 26% 4 47 4 7e5 43 + 11t

Drag = 12¢12 + 12¢8 4+ 108 + 4t + 742 + 12
Praz = Tt° + 12¢7 + 125 + 8¢3 + 6t

Prag = 6¢10 4 128 + 2¢0 4 7¢t + 4¢2 + 3

Dras = 5t + 5t% + 9t7 + 125 + 5¢3 + 10¢

Drag = 912 + 18 + 12¢0 4+ 34 + 1142 + 7

Dray = 5t 4+ 3t% + 11¢7 + 5¢5 + 3¢3 + 6t

Drag = Tt12 + 7¢10 + 12¢8 4 8¢6 4 7t* 4 3t2 + 4
Drag =t 4 12¢% 4 37 + 4t5 + 10t3 +- ¢

Drso = t12 + ¢10 48 4 5¢6 4 3¢* + 5¢2 + 10

D51 = 12t1 + 89 +¢7 4 5¢° 4¢3 + 6t

Drsg = 3t12 + 6¢10 + 58 + 3t6 + 12t + 1142 + 9
D753 = 10t° + 5t7 + 5¢5 + 8¢3 + 8t

Drsa = 4812 + 6¢10 + 88 + 11¢° 4 8¢* 4 12¢2 + 3
prss = 6t° + 10t7 + 12¢5 + 3¢3 + 2t

Drsg = 4612 + 12810 4 3¢8 4 420 4 1124 + 742 + 4
prsy = 6t + 7 +9t5 + 73 8t

Drsg = 3t12 + 10t10 4 2¢8 4 2¢% 4 9t* 4 4¢2 + 5
Drsg = 6t + 2t% + 6t7 + 9t5 + 8t3 + 9t

Drgo = 11812 + 12¢10 4 8¢8 + 11¢6 + 5¢4 + 32 + 1
pre1 = 3t + 9t° + 7t7 + 125 + 33 + 10¢

preg = 812 + 11¢10 + 9t® + 6t° 4+ 5¢2 + 9

pres = 9t + 11¢% + 87 + 5 4 10t3 + ¢

Drea = 2612 + 4¢10 + ¢8 16 4+ 6% + ¢2 4 12

Dres = 2t1 4+ 9 4 57 4+ 5¢5 + 11¢3 + 5¢

Pres = 912 + 12t10 4 4¢8 4 9¢° 4 3¢* 4 5¢2 + 4
prer = 1111 +¢% +¢7 + 2t5 1 ot3 + 2t

Dreg = 9t12 + 5¢10 + 268 1 76 4 7t 4812 + 1
Dreg = Ot + 3t% + 7t7 4+ 2t5 4+ 7¢3 4 9t

Do = 8t12 + 10 4 748 + 740 4 6t% + 5¢2 + 11
D = 1181+ 11¢° 4 3¢7 4 12¢5 + ¢

prrp = 4810 + 18 4+ 3t6 + 8t + 11¢2 + 10

D7 = 118° + 7 + ¢5 + 10t + 10¢

prra = 1188 + 9t + 4¢% 4 12

D75 = 8t7 4 10t% 4+ 93 + ¢
Drrg = 6t° 4+ 3t + 11¢2 + 3
Drr = Tt5 4 8t3 + ¢t

prg = 10t +3t2 + 1

Prrg = Tt°

Prso = 8t2 + 10
P71 = 5t

Prsg =Tt + 6
prg3 = 113 + 2t
Prsa = 4% +9

prgs = 10t3 + 3t

prgs = 12¢% + 1182 + 3

prgy = 3t + 10t

prgg = 11t% + 112 + 4

Drgg = 8t° 4¢3 + 4t

Proo = 4t* + 12t2 + 10

Droy = 4t° + Ot

Drgg = 10t8 + 4t* +3t2 + 9

Dro3 = 9t° 4¢3 + 3t

Dros = 668 4+ 9t + 3t% 48

Pros = 2t7 4 11t

Pros = Tt8 + Tt 4+ 12

Prgr = 3t7 + 85 + 10t3 4 5t

prog = 8+ 2t° + 6% + 4

Drog = 3t° + 11¢3 4 12¢

pgoo = 2t8 + 96 + 2 4 1

pgo1 = 5t + Tt7 + 4¢3 + 10t

peop = 5t8 +2t0 + 12¢4 + 1142 + 9

paos = 9t° + Tt + 12¢5 + 3t3 4 8¢

Dgos = 310 + 3t8 43¢0 + 3¢t 4 2t2 + 12
pags = 118° +¢7 4 3¢3 + 11t

pgog = Tt0 + 8 + 8 1 2t4 4+ 2

paor = 11t11 + 6t% + 27 + ¢5 4 4¢3 4 2t
Dgog = 2t10 4 6t8 + 11¢6 + 4 + 3t + 3
Dago = 10t + 7% + 10t7 + 2t5 4 3¢3 4 7t
pg1o = 12¢12 + 2¢10 4 2¢% 1 9¢2 1

pg11 = Tt + 6t° + 117 + 5¢5 + 12¢3 4 11t
pgi2 = 11812 +12¢10 4+ 766 + 6¢4 + 6¢2 + 10
Dg13 = bt + 7t% + 2t7 + 5t5 4 3¢3 4 ot
pg1s = 10t12 + 510 + 5¢8 4 36 4 6¢4 + 1182 4 12
pg15 = 6t + 10¢° + 5¢° + 4¢3 + 10t

pg1e = 2t12 + 1010 + 3t8 + 6t° + 9t* + 9t2 + 3
pg1y = Tt + 107 + ¢5 + 12¢3 + 10t

Dg1g = 4t10 + 4t® 1+ 9t6 4 5t 4 4¢2 4 7
pgig = 10t + 3t° + 12¢7 + 3t° + 83 + 8¢
Pago = Tt12 + 1210 + 3¢8 4 5¢° 4 10t* + 3t% + 4
Dgo1 = 6t +9t% + 4t7 5 1 ot3 + 7t

Dgog = t12 + 11410 4 8¢8 + 26 + ¢4 4 2¢2 + 10
Daos = 8t11 4+ 8t% +4t” + 9t° 4+ 2t3 + 9t

Pgog = 9t12 + 7¢10 4 8¢8 + 10t% + 4tt + 4t2 + 9
Dgos = 5t + 6t° + 8t7 + 7t5 + 3t3 4 9t

Dgog = Tt12 + 7t10 + 58 4+ 12¢6 +- 4 + 3

Dgor = 11 4+ 3t7 + 10t5 + 3 + 10¢

Dgog = t12 + ¢10 4+ 10t8 + 7¢% + 6t* + 9t2 4+ 4
Dgog = 12t + 3¢9 + 10t7 + 5¢° 4 8¢t

Dg3p = 3t12 4+ 9t8 + 11¢6 + 12t* +- 7¢2 + 5

Dg31 = 11t° + 4¢7 4+ 3t° + 3 + 6t

Dg3p = 4t12 4+ 3¢10 18 1 216 - 1244 4 2¢2 - 1
Pgaz = 12¢11 +12¢% 4 7¢° 4 11¢3 + 3¢

Dgaa = 4812 +3t10 4 38 + 1060 + 2t* + 2 + 9
Pggs = Tt° + 47 + Tt°

Dg3g = 12 + 910 + 8t8 1 3¢6 4 5¢* 4 10t + 12
pa3y = 2t11 4+ 5¢% + 0t + 12¢5 + 8¢3 + 4t

Dgag = 812 + 10¢10 4+ 11#8 + 11¢6 + ¢4 + 6¢2 + 4
Dg3g = 9t 4+ 12¢% + 12¢7 + 5¢° 4 11¢3 + ot

Daap = 2t12 4+ 3¢10 4 4¢® 1 2¢6 1 10t2 +1

pgay =t 4+ 2t7 + 3 4 5t

Daag = t12 + 5t10 + 668 4+ 116 + ¢4 4 12¢2 + 11
paaz = t1 + 4% + 12¢7 + 1265 + T3 + ¢

Daag = 11812 +¢8 +10t8 + ¢* 4 102 + 10

Daas = 11t + 747 + 8¢5 + 3 4 11¢

Daag = 912 +2¢10 + 28 + 65 + T¢2 + 12

Pgar =t 4 4t7 + 6t

Dgag = 11812 + 12810 6 1 5¢2 4 3

Dgag = 8t + 8t° + 6t7 4 3t° 4 9t3 + 11t

Pgso = 7t12 + 12¢10 4 128 + 446 + ot 842 + 1
pgsy =t + 589 +¢7 + 1145 + 11¢3 + 3¢

Dgsy = 4812 + 4t10 + 6¢8 + 60 + 12¢* + 11¢2 + 10
Dgsz = 8t + 3t% + 107 + 12¢° + 5¢3 + 10t

Dgss = 8t12 + 8t10 + 2¢8 - 5¢6 + 2t4 - 7¢2 + 6
Dgss = 5t + 4t° + 6t7 45 + 5¢3 + 3¢

Dgss = 11812 + 2¢10 4+ 9¢8 1 9¢6 + 9

Dgsy = 6t7 4 6t° + 123 + 8t

Dgsg = 6t12 + 7¢10 + 9¢8 4+ 10t6 + 7¢t + 12¢2 + 3
Dgsg = 8t + 8t% + 3t7 + 105 + ¢3 4 2t

Dggo = 6t12 + 7¢10 + 12¢8 + 5¢6 + 10¢* + 4¢2 + 4
Dgg1 = 6t + 3t% + 5t7 + 4t5 4 4¢3 4 5t

Dgey = 10t12 + 310 4 5¢6 4 6¢* 4 12t2 + 10

Dgs = 2t11 4+ 4t% + 7T 4 7t5 + 3 6t

Dges = 3t12 + 3¢10 + 12¢8 + 446 + 8¢4 + 52 + 9
Dges = 12t° 4 7t7 + 10t% + 9t

Pees = 12¢12 + 10¢10 + 68 + 85 + 4¢* + 112 + 8
pger = 2t11 4 10t° 4 127 + 8t° + 2t3 + 5t

Pgeg = 5t12 + 1110 + 6¢8 + 6t + 4¢* 4 9¢2 + 12

Dgeo = Ot + 1% + 11¢7 + 9t5 + 6t3 + 5t

Dg7o = t12 4+ ¢10 + 12¢8 + 5¢4 - 5¢2 + 4

pgy1 = 3t +3t% + 2¢7 4 4t5 + 2t3 + 2t

Dg7y = 6t12 + 6¢10 + 268 146 1 ot* + 442 + 1

pgra = 3t + 10t% + 6t7 + 6¢5 + 12¢3 + 5t

Pgra = Tt12 +6t8 + 6 + 72 + 9

pars = TEHL 4+ 7t% + 1187 + 1185 + 12¢

pare = 6¢12 + 1010 + 11¢8 + 426 + 8t* + 102 + 12
parr = 12t + 10t° + 6t5 + 7¢3 + 8t

pg7g = 9t12 + 9¢10 + 2¢8 4 56 1 2¢% 4 10¢2 + 2
pgrg = 5t + 12t° + 6t7 + 9t° + 9t3 + 3¢

Dggo = 5t12 + 5¢10 4 3¢8 + 76 + 12t 4 72 4 3
pagy = St + 12t + 7 + 65 + 7t + ¢

Dggy = 2t12 + 12¢10 4 6¢8 + 105 + 10¢% + 3¢2 + 1
Dggs = 9% + 10t7 + 125 + 2¢3

Pegs = Tt1% 4 9¢10 4 11¢8 + 116 + 3t* + 7¢2 + 10
psgs = 6¢11 + 12t° + 0t7 + 4t° + 613 + 4t

Dagg = Tt12 + 2t10 + 5¢8 4+ 96 + 11¢% 4 10¢2 + 12
Dggy = t° + 5t7 + 11¢° + 8¢3

Dggg = 5t12 + 4t10 4+ 128 + 125 + ¢4 + 82 + 3
Dagg = 811 + 10t° + 57 4 4t5 + 4¢3

Dggo = 4t12 + 5¢10 4 4¢8 1 6¢6 + 5t + 32 4+ 7
Dgor = 12t11 + 11¢° + 7¢7 4 8¢3 + 4t

Dggp = 2t12 + 4¢10 4 2¢8 + 36 + 8% - 9t2 + 4
Dggz = 6t + 8t7 + 3t5 4 8t3 4 4t

Pgog = 12¢12 + 210 + 918 4 8¢6 4 12¢* 4 12¢2 + 10
Dgos = 12¢11 + 11¢° + 23 + ot

Dgogg = 2t12 + 10¢10 + 10¢8 + ¢6 + 2t* + 6t + 9
Dagr = 8t + 7t% + 7 + 55 + 10t3 + 6t

Pgog = 3t12 +3t8 + 0t + ¢4 + 5t2 4+ 3

Dggg = 5t° + 3t7 + 35 + 2t3 + 8¢

Pogo = 8t10 + 3t8 + 76 + 5t + 2 + 4

Poo1 = 11¢11 4+ 11¢% + 12¢7 + 3¢5 + 11¢3 4 ot

Doz = 12t12 + 10t8 + 3¢5 + 4t* 4 6t2 + 5

Dooz = 11t11 + 4¢% + 67 + 11¢5 + 4¢3 4 8t

Doga = 512 + 5¢10 + 38 + 26 5¢4 1 42 11
Dogs = 1081 + 3t% 4 4¢7 4 ¢° 4 9¢3 + 10¢

Dogs = 10¢12 + 10t10 4 10¢8 4 11¢6 + 4¢* 4+ 11£2 4+ 9
Doy = 3t11 + 2¢% + 10t7 + 11¢° + 10¢3 + 8¢
Poog = 4t12 + 8¢10 4 11¢8 + 4¢° + 3¢ + 6t2 + 12
Dogo = 9% + 11¢7 4 115 + 2¢3 + 2t

Poro = 12 + 810 + 2t8 1 6t6 + 2t* +3t2 44
D1y = 8t° 4+ 9t + 3¢5 - 4t3 + Tt

Porg = t12 + 310 1 4t® 16 6t + 5t2 +1
Por3 = 8t + 107 + 12¢5 + 53 4 2¢

Dora = 4812 + 9t10 4+ 78 + 746 + 124 442 + 11
Dos = 8t11 4+ 7¢% + 87 + 12¢5 + 23 4 12t

D1 = 6612 + 3t10 + 28 + 65 + 11¢* 4 4¢% 4 10
Por7 = 4t1 + 12t% 4+ 5¢7 + 3¢5 + 4¢3 + 9t

Dog = 2t12 4 6¢10 4 12¢8 4+ 8¢6 4 11¢2 4 12

Doro = 12t + 6t° 4 2¢7 + 10t° 4 9t + 10¢

Dogo = Tt12 4+ 10+ 10¢8 + 10t6 + 8¢* + 10¢2 + 3
Doo1 = Tt 4+ 108° 4+ 11¢7 4 11¢5 + 6¢3 4 11¢
Dogg = 12¢12 + 310 48 4+ 12¢6 4 4¢% 4 1142 + 1
Doz = 6t + 10t° + 10t7 4 7¢5 4 12¢3 + 7t

Doga = 12812 + 11410 + 7¢8 4 5¢° 4 5¢% 4-2t2 4 10
Doy = 12¢11 + 4¢% + 5¢7 + 75 + 5¢3 + 12¢

Doog = 2t12 + 10¢10 + 5¢8 4 5¢6 4 8¢* 4 11t2 + 6

Pogy = 6t + 6t° 4 47 + 3¢5 4 10t
Doog = 10+ 10t8 + 4t8 + 2t* +- 6249
Doge = 6t° + 10t + 105 + 9t + 9t
Do3o = 68 + 12t8 + 4 + 3

Do31 = 2t7 + 95 + 12¢3 4 10t

Doz = 8t8 4 4t + 6t2 4 4

Doz = 5t° 4 23 + 10t

Pgza = 9t* + 42 + 10

Po3s = 5t°
Posg = 262 + 9
Doz7 = 111

References

[OR12] Cormac O’Sullivan and Morten S. Risager, Non-vanishing of Taylor coefficients and
Poincaré sertes (2012). 71, 16, 21, 29, 30, 32, 33

[BGHZ04] Jan Hendrik Bruinier, Gerard van der Geer, Giinter Harder, and Don Zaiger, The
1-2-3 of Modular Forms, 2004. T16, 20, 29

[1008] Ozlem Imamoglu and Cormac O’Sullivan, Parabolic, hyperbolic and elliptic
Poincaré series (2008). 119

[Cox13] David A. Cox, Primes of the form z? 4+ ny?: Fermat, class field theory, and
complex multiplication, Vol. 34, John Wiley & Sons, 2013. 19, 12, 14, 15

[Mil06] James S. Milne, Elliptic Curves, BookSurge Publishers, 2006. 72, 3, 4
[Mil0g] , Abelian Varieties (v2.00), 2008. Available at jmilne.org/math. 72
[Mil17] , Algebraic Geometry (v6.02), 2017. Available at jmilne.org/math. 72, 3

[Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, Vol. 106, Springer, 2009. 72,
6, 8, 11

[ST15] Joseph H. Silverman and John T. Tate, Rational points on elliptic curves, Springer,
2015. 72

[Gall8] Steven D. Galbraith, Mathematics of Public Key Cryptography. Version 2.0,

Cambridge University Press, 2018. Available at
math.auckland.ac.nz/~sgal018 /crypto-book/crypto-book.html. 12

[Sut21] Andrew Sutherland, Elliptic Curves, 2021. Available at
math.mit.edu/classes/18.783/2017/lectures. 16, 10

[Vak23] Ravi Vakil, The Rising Sea: Foundations of Algebraic Geometry, 2023. Available at
math.stanford.edu/~vakil/216blog/FOAGjul3123public.pdf. 12

[KK07] Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2nd ed.,
Springer, 2007. 15, 6, 8

[Zag81] Don B. Zagier, Zetafunktionen und Quadratische Korper: Eine Einfihrung in die
hohere Zahlentheorie, Springer, 1981. T15

[Kat92] Svetlana Katok, Fuchsian Groups, The University of Chicago Press, 1992. T17

[DeF17] Luca DeFeo, Mathematics of Isogeny Based Cryptography, arXiv, 2017. Available at
arxiv.org/abs/1711.04062. 113

[ZV] Don Zagier and Fernando Rodriguez Villegas, Square roots of central values of
Hecke L-series. Available at
people.mpim-bonn.mpg.de/zagier/files/mpim/92-68 /fulltext.pdf. 120

https://www.jmilne.org/math
https://www.jmilne.org/math
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://math.mit.edu/classes/18.783/2017/lectures.html
https://math.stanford.edu/~vakil/216blog/FOAGjul3123public.pdf
https://arxiv.org/abs/1711.04062
https://people.mpim-bonn.mpg.de/zagier/files/mpim/92-68/fulltext.pdf

